Разложение многочлена на множители с помощью формул сокращенного умножения.

Конспект занятия
Древний мыслитель и философ Китая Конфуций говорил: «Учиться и, когда придет время, прикладывать усвоенное к делу – разве это не прекрасно».
Мазурова Ирина Михайловна
Содержимое публикации

Разложение многочлена на множители с помощью формул сокращенного умножения.

Учиться и, когда придет время,

прикладывать усвоенное к делу –

разве это не прекрасно.

Конфуций

Тип урока : Урок закрепления знаний

Формируемые результаты:

Предметные: закрепить навыки применения способов разложения многочлена на множители с помощью формул сокращенного умножения.

Личностные: формировать умение планировать свои действия в соответствии с учебным заданием.

Метапредметные: формировать умение соотносить полученный результат с поставленной целью.

Цели урока:

1.усвоение знаний в системе, расширение и углубление знаний, умений и навыков учащихся по теме урока, рассмотрение их использования для упрощения выражений, решения уравнений, вычисления значений выражений, разложения многочленов на множители;

2.развитие креативного мышления, познавательной активности учащихся, умения анализировать, сравнивать, делать выводы;

3.повышение интереса учащихся к предмету, формирование у учащихся положительного мотива учения, создание условий для развития рефлексивной культуры; обеспечить развитие у школьников умения сравнить познавательные объекты.

Задачи урока:

─создать положительную психологическую атмосферу для максимального раскрытия способностей учащихся ;

─развивать умение формулировать и высказывать свои мысли, работать в команде и парах, применять знания на практике;

─развивать познавательные процессы, память, внимание, наблюдательность, сообразительность.

Орг. момент.

Здравствуйте, ребята. Начинаем наш урок. Древний мыслитель и философ Китая Конфуций говорил: «Учиться и, когда придет время, прикладывать усвоенное к делу – разве это не прекрасно». Так вот, давайте сегодня на уроке будем следовать этому совету мудреца, будем применять знания, полученные на предыдущих уроках к новым ситуациям, это пригодится вам в дальнейшей жизни. Тема нашего урока сегодня: «Разложение многочлена на множители с помощью формул сокращенного умножения». На протяжении последних уроков мы с вами изучали эти формулы сокращенного умножения и пришли к выводу, что с помощью формул сокращенного умножения можно совершать ряд алгебраических преобразований и делать это нужно очень осмотрительно. Мы еще раз увидим, какая удивительная сила заключается в формулах и как они работают при преобразовании выражений.

“У математиков существует свой язык – это формулы”. С. Ковалевская

Вы заметили, что

Формулы всюду - в космосе, в небе,

К Северу, в Африку с ними плыви.

Надо уметь их составить!

Надо уметь доказать!

Надо уметь их использовать,

Ну а короче - знать!

Готовясь к уроку, я встретилась с интересным заданием и очень ему удивилась. Оказывается, что все числа равны между собой. Предлагаю вам его и обращаюсь за помощью. Помогите найти, в чем ошибка?

Возьмем два произвольных неравных между собой числа а и b и запишем для них очевидное тождество a2-2ab + b2 = b2-2ab + a2.

Слева и справа стоят полные квадраты, т. е. можем записать

(а-Ь)2 = (b-а)2. Квадраты двух выражений равны, получаем, что эти выражения тоже равны а-b = b-аили 2а = 2b, или окончательно, а = b.

Данное ложное утверждение называется софизм. Оно имеет видимость истинного, но приводит к парадоксальным выводам. Каков бы ни был софизм, он непременно содержит одну или несколько замаскированных ошибок. Великие математики иногда развлекались тем, что сочиняли софизмы, которыми вводили в замешательство слушателей или читателей.

А теперь объединитесь по парам, возьмите КАРТОЧКУ №1, рассмотрите алгебраические выражения, подумайте, чем похожи и чем различаются данные алгебраические выражения.

Задание: Распределите данные выражения на группы по способу разложения на множители, запишите их номера в соответствующую графу таблицы и объясните, по какому принципу проведено распределение.

1) 3ab2 – 6a3b2;

2) 16х8 – 9;

3) 10х3-5х4;

4) 8х3-27;

5) 2a+2b+5b+5a;

6) 48х + 16 + 36х2;

7) х2у2+ k2 – 2хуk;

8) р(р-1)+7(р-1);

9) (а + 3)² – а2;

10) 9b² – (a – 7b)²

11) х2+6х+8

12) а3 –3а2b + 3аb2 – b3;

13) 64р2+ 9 + 48р;

14) 9 – 16р2;

1 группа

2 группа

1,3,5,8,11,13

2,4,6,7,9,10,12,13,14

У кого все 9 многочленов отобраны правильно поставьте 2 балла в лист, если есть 1 ошибка – то 1 балл, больше – 0 баллов.

Учащиеся объясняют принцип распределения. Посмотрите на 2 группу примеров и попробуйте сформулировать, чем мы будем заниматься на уроке. И формулируют цель: Учиться применять на практике разложение многочленов на множители с помощью формул сокращенного умножения.

Давайте попробуем составить план нашей работы.

Сейчас разбейтесь на группы по 4 человека и мы проведем групповой опрос по словесным формулировкам формул.

Карточка №2.

Что значит «разложить многочлен на множители?»

Чему равен квадрат суммы двух выражений?

Чему равен квадрат разности двух выражений?

Чему равна разность квадратов двух выражений?

Чему равна сумма кубов двух выражений?

Чему равна разность кубов двух выражений?

Чему равна сумма кубов двух выражений?

Чему равен куб разности двух выражений?

За правильный ответ ставим себе 1 балл в лист опроса.

Вы знаете, что 9 марта исполнилось бы 80 лет первому космонавту Ю. Гагарину, а через месяц 12 апреля мир отмечает «День Космонавтики».

Презентация Устная работа (6 слайдов).

За правильный ответ ставим себе 1 балл в лист опроса.

( Хочется напомнить, что на формулах сокращённого умножения основаны некоторые математические фокусы, позволяющие производить вычисления в уме.

Эти знания могут помочь вам тогда, когда под рукой не оказалось калькулятора, в том числе и на экзамене.)

Предлагаю вам еще раз поработать в парах и решить следующие задания со взаимопроверкой.

Карточка №3 (Работа в парах со взаимопроверкой)

Так вот, в эпоху Пифагора (VI в. до н. э.) греки именовали планеты не так, как они называются сейчас.

Разложите выражения на множители. Используя найденные ответы и данные таблицы, узнайте, какие названия были у известных планет в древности.

Пирой:х2 - 4ху + 4у2 =

Стилбон: 4х2 + 4ху + у2 =

Фаэтон:х4-2х2у + у2=

Фенон: у4 - 4ху2 + 4х2 =

Эосфор: 0,25х2 + 2ху+ 4у2 =

Геспер:4у2 + 0,25 х2 + 2ху =

(0,5х+2у)2(х-2у)2(2х + у)22 - 2х)22-у)2

ВенераМарс МеркурийСатурнЮпитер

Ответы: известные грекам планеты в древности именовались:

Сатурн __фенон_________(в переводе означает сияющий);

Юпитер_____фаэтон______(блистающий, лучезарный);

Марс______пирой________(огненный, пламенный);

Меркурий_________стилбон______ (сверкающий, искрящийся).

Венера имела два названия

_____эосфор__________(несущая утро) и

_____геспер_______ (вечер), т. к. рассматривалась греками как две различные планеты. Позже, когда стало ясно, что это одна планета, ее стали называть Фосфорос. (В древности были известны только эти пять планет, видимые невооруженным глазом. Уран, Нептун, Плутон были открыты за последние 200 лет).

У кого все названия записаны правильно - поставьте 2 балла в лист, если есть 1 ошибка – то 1 балл, больше ошибок – 0 баллов.

Теперь откройте тетради и запишите число, классная работа и тему урока «Разложение многочлена на множители с помощью формул сокращенного умножения».

Задание.

Используя одночлены 5 и 2а2, составьте разность:

а) квадратов;

б) кубов.

Разложите эти выражения на множители.

Задача . В прямоугольном помещении ширина на 5 м больше высоты и на 5 м меньше длины. Найдите измерения помещения, если площадь его стен (с учетом окон и дверей), пола и потолка равна 244 м2.

За Х м принять ширину.

Физкультминутка(под легкую музыку). Упражнения для улучшения мозгового кровообращения

1. Стоя или сидя, руки в стороны, ладони вперед, пальцы разведены. 1 — обхватить руками плечи, заведя руки как можно дальше; Повторить 4 раза.

2.Сидя на стуле, руки на поясе. 1 — повернуть голову направо; 2 - то же в другую сторону. Повторить 6 раз. Темп медленный.

Задание.

Назовите ситуации, в которых полезно применение разложения на множители, используя формулы сокращенного умножения.

А сейчас мы поговорим о том домашнем задании, которое вам было задано.

И так,

Вам было предложено разделиться на группы «Исследователи», «Практики», «Мечтатели».

Если вы любите доказывать и выводить формулы - то вы «Исследователи».

Если вы любите выполнять преобразования алгебраических выражений, решать задачи и уравнения – то вы «Практики».

Если вам интересно самим творить - то вы «Мыслители».

Посмотрим, как свое дом. задание приготовила каждая группа.

«Исследователи»

« Во второй книге «Начал» Евклида излагается геометрическая алгебра греков. В этой книге Евклид рассматривает в геометрической форме и формулы сокращенного умножения. Задачи у Евклида всегда решаются не вычислением, а построением.» Просим показать геометрическую иллюстрацию следующих формул: квадрат суммы, квадрат разности и разность квадратов.

Сейчас мы покажем геометрическую иллюстрацию формулы квадрата трехчлена.

«Практики»

Разложить многочлены на множители (метод выделения полного квадрата)

х2 -4х -32

х4 + 4

33.36(б)

Построить график уравнения 33.38(б)

«Мыслители».

Портрет.

Обои.

Одним из промыслов, существовавших на территории Подмосковья, была так называемая "гуслицкая" роспись, которой в период ее бытования оформлялись исключительно старообрядческие рукописные певческие книги. Более нигде эта роспись не использовалась. Гуслицкая роспись бытовала исключительно в местности "Гуслицы" в юго-восточной части бывшего Богородского уезда, населенной в основном, старообрядцами. Сейчас этот край, за исключением нескольких населенных пунктов, находится в южной части Орехово-Зуевского района Московской области.

Что же особенного в гуслицкой росписи? Это, прежде всего, яркие сияющие краски: синий, голубой, розовый, бирюзовый, в сочетании с обильным золочением. Такого нет ни в одной из старообрядческих рукописных школ.

Следующей отличительной чертой, пожалуй, самой заметной, характеризующий гуслицкий орнамент, является цветная штриховка, употреблявшаяся художниками для моделировки объемов или при раскраске элементов украшений.

4.Буклет.

Самостоятельная работа. Карточка №4.

Вариант 1.

Базовый уровень

1. Разложите на множители: 9a2-64b2 .

2.Найдите значение выражения: 1572-1432.
3. Решите уравнение: x2+24x+144=0.


Повышенный уровень

4. Учитель предложил учащимся следующее задание: «Найдите значение выражения а2 - 4ab + 4b2 - 25, если а-2b= 9». Ниже приведены решения трех учеников.

Решение Оли: нельзя найти значение выражения, так как неиз­вестно, чему равны значения аи b.

Решение Толи: а2 - 4ab + 4b2 - 25= (a- 2b)2- 25 = 9- 25 = - 16.

Решение Коли: а2 - 4ab + 4b2 - 25=- 2b)2 - 25 = 81 - 25 = 56.

Определите, верно ли каждое из решений.

неверно

верно

Решение Оли

неверно

верно

Решение Толи

неверно

верно

Решение Коли

Таблица для ответов:

задания

1

2

3

4

Вариант 1

(3а – 8b) (3а + 8b)

4200

-12

неверно — неверно — верно

Вариант 2.

Базовый уровень

1. Разложите на множители: 16x2+8х+1 .

2.Найдите значение выражения: 1652-652.
3. Решите уравнение: 25y2-49=0

Повышенный уровень

4. Учитель предложил учащимся следующее задание: «Найдите значение выражения а2 - 4ab + 4b2 - 25, если а-2b= 10».

Ниже приведены решения трех учеников.

Решение Маши: нельзя найти значение выражения, так как неиз­вестно, чему равны значения аи b.

Решение Миши: а2 - 4ab + 4b2 - 25= (a- 2b)2- 25 = 10- 25 = - 15.

Решение Даши: а2 - 4ab + 4b2 - 25=- 2b)2 - 25 = 100 - 25 = 75.

Определите, верно ли каждое из решений.

неверно

верно

Решение Маши

неверно

верно

Решение Миши

неверно

верно

Решение Даши

Таблица для ответов:

задания

1

2

3

4

Вариант 2

(4х +1)2

23000

1,4 и – 1,4

неверно — неверно — верно

Рефлексия.

— Для анализа урока мы с вами используем идею признанного во всем мире эксперта в области креативности и обучения навыкам мышления, автора концепции творческого мышления и основанных на ней широко известных методик, применяемых в бизнес-практике, творческой работе и обучении доктора Эдварда де Боно, которую он назвал «Шесть шляп».

Зеленая шляпа — символ свежей листвы, изобилия и плодородия. Символизирует творческое начало, расцвет новых идей.

Первая команда ответит, пригодятся ли нам и где знания, полученные на уроке?

Желтая шляпа — жизнеутверждающий цвет. Полна оптимизма, под ней живет надежда и позитивное мышление.

Вторая команда отметит, какие положительные моменты были на уроке, и обоснует свой оптимизм.

Белая шляпа — белый цвет беспристрастен и объективен. В ней «варятся» мысли, «замешанные» на цифрах и фактах.

Третья команда должна оценить происходившее на уроке, подкрепляя свой ответ цифрами и фактами.

Красная шляпа — символ восприятия действительности на уровне чувств. В ней можно отдать себя во власть эмоций.

Первая команда выскажет свои эмоции по поводу урока.

Черная шляпа — черный цвет мрачный, зловещий, словом — недобрый. Это критика, доходящая до въедливости.

Вторая команда должна высказать свое мнение о том, что не получилось на уроке или что требует доработки.

Синяя шляпа — холодный цвет, цвет неба. Синяя шляпа связана с организацией, обобщением того, что достигнуто.

Третья команда должна указать, на что необходимо обратить внимание при изучении данной темы.

Дом. задание. ОЦЕНКИ за урок

Итог урока. Древние мудрецы говорили

Скажи мне, и я забуду.

Покажи мне и может быть, я запомню.

Сделай меня соучастником, и я запомню.

И в заключении хочу привести слова академика Александрова: «Мне бы хотелось, чтобы слово «формула» не означало для вас «формальность», чтобы вы творчески подходили к применению их на практике».

Дом. задание. п. № 33 №№48(а), 51(а,б), 53(б),

Карточка №5.

№1. Запишите в таблицу формулы, которые позволяют сократить вычисления. Для каждой формулы приведите пример рационального вычисления с её помощью.

Формула

Пример

№2.

Составьте 2 выражения, которые нельзя разложить на множители по формулам сокращенного умножения.

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Алгебра
Презентации по алгебре для 9 класса «Презентация: Решение задания 8 ОГЭ Диаграммы»
Алгебра
Оценка знаний по алгебре для «Экономические задачи на ОГЭ (проценты)»
Алгебра
Презентации по алгебре для 11 класса «Параметры. Метод областей.»
Алгебра
Уроки по алгебре для 9 класса «Совет мудрецов "Прогрессии"»
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь