Проект элективного занятия "Вероятность и комбинаторика"

Конспект занятия
Поле посещения элективных занятий группа учащихся подготовила проект-итоговый. Тема которого очень важна для подготовки к ГИА.
Зарьянцева Виктория Павловна
Содержимое публикации

Проект учащихся 9-х классов-итог посещения элективных занятий.

Руководитель проекта Зарьянцева Виктория Павловна.

Тема: «Вероятность и комбинаторика»

Выполнили: Маврина Карина, Стребкова Ксения, Сёмин Никита.

1)Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35 этих стекол, вторая – 65 Первая фабрика выпускает 3 бракованных стекол, а вторая – 5 Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.



Решение.

Вероятность того, что стекло выпущено на первой фабрике и оно бракованное: 0,35 · 0,03 = 0,0105.

Вероятность того, что стекло выпущено на второй фабрике и оно бракованное: 0,65 · 0,05 = 0,0325.

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0105 + 0,0325 = 0,043.

 

Ответ: 0,043.


2) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

 Решение.

Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,5 · 0,34 = 0,17.

 

Ответ: 0,17.

3)Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение.

События выиграть белыми и черными фигурами независимы, вероятность произведения независимых событий равна произведению их вероятностей: 0,5 · 0,32 = 0,16.


4)На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос по теме «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: 0,2 + 0,15 = 0,35.

 

Ответ: 0,35.

5)В торговом центре два одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам после закрытия центра. Известно, что вероятность события «К вечеру в первом автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во втором автомате закончится кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к вечеру дня кофе останется в обоих автоматах.



Решение.

Рассмотрим события

А = кофе закончится в первом автомате,

В = кофе закончится во втором автомате.

Тогда

A·B = кофе закончится в обоих автоматах,

A + B = кофе закончится хотя бы в одном автомате.

По условию P(A) = P(B) = 0,25; P(A·B) = 0,15.

 

События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

P(A + B) = P(A) + P(B) − P(A·B) = 0,25 + 0,25 − 0,15 = 0,35.

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,35 = 0,65.

 

Ответ: 0,65.

 

Приведем другое решение.

Вероятность того, что кофе останется в первом автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется во втором автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,15 = 0,85. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,85 = 0,75 + 0,75 − х, откуда искомая вероятость х = 0,65.

 

Примечание.

Заметим, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,25·0,25 = 0,0625, однако, по условию, эта вероятность равна 0,15.

6)В тоговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,2. Вероятность того, что кофе закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

 


7)В тоговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,2. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

 


8)Вероятность того, что новый пылесос прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,88. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

 9)Вероятность того, что новый принтер прослужит больше года, равна 0,9. Вероятность того, что он прослужит больше двух лет, равна 0,81. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

 


10)При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

 

В ответе укажите наименьшее необходимое количество выстрелов.



Решение.

Найдем вероятность противоположного события, состоящего в том, что цель не будет уничтожена за n выстрелов. Вероятность промахнуться при первом выстреле равна 0,6, а при каждом следующем — 0,4. Эти события независимые, вероятность их произведения равна произведению вероятности этих событий. Поэтому вероятность промахнуться при n выстрелах равна: 

 

Осталось найти наименьшее натуральное решение неравенства

 

Последовательно проверяя значения , равные 1, 2, 3 и т. д. находим, что искомым решением является  Следовательно, необходимо сделать 5 выстрелов.

 

Ответ: 5.

 

Примечание.

Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов:

 

Р(1) = 0,6.

Р(2) = Р(1)·0,4 = 0,24.

Р(3) = Р(2)·0,4 = 0,096.

Р(4) = Р(3)·0,4 = 0,0384;

Р(5) = Р(4)·0,4 = 0,01536.

 

Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени.

 

Приведем другое решение.

Вероятность поразить мишень равна сумме вероятностей поразить ее при первом, втором, третьем и т. д. выстрелах. Поэтому задача сводится к нахождению наименьшего натурального решения неравенства

11 )Чтобы поступить в институт на специальность «Международное право», абитуриент должен набрать на ЕГЭ не менее 73 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Социология», нужно набрать не менее 73 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент Л. получит не менее 73 баллов по математике, равна 0,5, по русскому языку — 0,9, по иностранному языку — 0,9 и по обществознанию — 0,7.

Найдите вероятность того, что Л. сможет поступить хотя бы на одну из двух упомянутых специальностей.


12)Чтобы поступить в институт на специальность «Международные отношения», абитуриент должен набрать на ЕГЭ не менее 74 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Менеджмент», нужно набрать не менее 74 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент Р. получит не менее 74 баллов по математике, равна 0,9, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,8.

Найдите вероятность того, что Р. сможет поступить хотя бы на одну из двух упомянутых специальностей.


13)Чтобы поступить в институт на специальность «Переводчик», абитуриент должен набрать на ЕГЭ не менее 79 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Коммерция», нужно набрать не менее 79 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент К. получит не менее 79 баллов по математике, равна 0,7, по русскому языку — 0,6, по иностранному языку — 0,7 и по обществознанию — 0,8.

Найдите вероятность того, что К. сможет поступить хотя бы на одну из двух упомянутых специальностей.

14)Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,02. Известно, что 77% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.



Решение.

Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем:

Ответ: 0,6976.




15)Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,02. Известно, что 58% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

 





16)Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,02. Известно, что 48% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

 





↑ 17)

Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.



Решение.

Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», С = «чайник прослужит ровно два года», тогда A + B + С = «чайник прослужит больше года».

 

События A, В и С несовместные, вероятность их суммы равна сумме вероятностей этих событий. Вероятность события С, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда:

P(A + B+ С) = P(A) + P(B)+ P(С)= P(A) + P(B),

откуда, используя данные из условия, получаем

0,93 = P(A) + 0,87.

Тем самым, для искомой вероятности имеем:

P(A) = 0,93 − 0,87 = 0,06.

 

Ответ: 0,06.

18)Перед началом волейбольного матча капитаны команд тянут жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Мотор» по очереди играет с командами «Статор», «Стартер» и «Ротор». Найдите вероятность того, что «Мотор» будет начинать с мячом только вторую игру.



Решение.

Требуется найти вероятность произведения трех событий: «Мотор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125.

 

Ответ: 0,125.




Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Алгебра
Алгебра
Уроки по алгебре для 8 класса «Стандартный вид числа»
Алгебра
Презентации по алгебре для 7 класса «Умножение многочлена на многочлен»
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь