Приемы быстрого счета

Разное
Важную роль в формировании универсальных учебных действий играет обучение школьников навыкам рациональных вычислений. Ни у кого не вызывает сомнения, что, развитие умения рациональных вычислений и преобразований, а также развитие навыков решения простейших задач "в уме" - важнейший элемент математической подготовки учащихся.рассмотрены некоторые приемы быстрого счета
Светлана Егоровна Воронова
Содержимое публикации

Важнейшей задачей образования является формирование универсальных учебных действий, обеспечивающих школьникам умение учиться, способность к саморазвитию и самосовершенствованию. Качество усвоения знаний определяется многообразием и характером видов универсальных действий. Формирование способности и готовности учащихся реализовывать универсальные учебные действия позволяет повысить эффективность процесса обучения. Все виды универсальных учебных действий рассматриваются в контексте содержания конкретных учебных предметов.

Важную роль в формировании универсальных учебных действий играет обучение школьников навыкам рациональных вычислений. Ни у кого не вызывает сомнения, что, развитие умения рациональных вычислений и преобразований, а также развитие навыков решения простейших задач "в уме" - важнейший элемент математической подготовки учащихся. Важность и необходимость таких упражнений доказывать не приходиться. Значение их велико в формировании вычислительных навыков, и совершенствовании знаний по нумерации, и в развитии личностных качеств ребенка. Создание определенной системы закрепления и повторения изученного материала дает учащимся возможность усвоения знаний на уровне автоматического навыка.

Знание упрощенных приемов устных вычислений остается необходимым даже при полной механизации всех наиболее трудоемких вычислительных процессов. Устные вычисления дают возможность не только быстро производить расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки. Кроме того, освоение вычислительных навыков развивает память и помогает школьникам полноценно усваивать предметы физико-математического цикла.

Очевидно, что приемы рационального счета  являются  необходимым элементом  вычислительной  культуры  в жизни каждого человека,  прежде всего силу своей практической значимости, а обучающимся она необходима практически на каждом уроке.

Рассмотрим конкретные примеры различных приемов быстрых рациональных вычислений.

РАЗЛИЧНЫЕ СПОСОБЫ СЛОЖЕНИЯ И ВЫЧИТАНИЯ

СЛОЖЕНИЕ

Основное правило для выполнения сложения в уме звучит так:

Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например:

56+8=56+10-2=64;

65+9=65+10-1=74.

СЛОЖЕНИЕ В УМЕ ДВУЗНАЧНЫХ ЧИСЕЛ

Если цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например:

34+48=34+50-2=82;

27+31=27+30+1=58.

СЛОЖЕНИЕ ТРЕХЗНАЧНЫХ ЧИСЕЛ

Складываем слева на право, то есть сначала сотни, потом десятки, а затем единицы. Например:

359+523= 300+500+50+20+9+3=882;

456+298=400+200+50+90+6+8=754.

ВЫЧИТАНИЕ

Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.

56-9=56-10+1=47;

436-87=436-100+13=349.

Умножение многозначных чисел на 9

1. Число десятков увеличим на 1 и вычтем из множимого

2. К результату приписываем дополнение цифры единиц множимого до 10

Пример:

576 · 9 = 5184 379 · 9 = 3411

 

576 – (57 + 1) = 576 – 58 = 518 . 379 – (37 + 1) = 341 .

4 1

Умножение на 99

1. Из числа вычитаем число его сотен, увеличенное на 1

2. Находим дополнение числа, образованного двумя последними цифрами до 100

3. Приписываем дополнение к предшествующему результату

Пример:

27 · 99 = 2673 (сотен – 0) 134 · 99 = 13266

27 – 1 = 26 134 – 2 = 132 (сотня – 1 + 1)

100 – 27 = 73 66

Умножение на 999 любого числа

1. Из умножаемого вычитаем число тысяч, увеличенное на 1

2. Находим дополнение до 1000

23 · 999 = 22977 ( тысяч – 0 + 1 = 1)

23 – 1 = 22

1000 – 23 = 977

124 · 999 = 123876 ( тысяч – 0 + 1 = 1)

124 – 1 = 123

1000 – 124 = 876

1324 · 999 = 1322676 (тысяча – 1 + 1 = 2)

1324 – 2 = 1322

1000 – 324 = 676

Умножение на 11, 22, 33, …99

Чтобы двузначное число, сумма цифр которого не превышает 10, умножить на 11, надо цифры этого числа раздвинуть и поставить между ними сумму этих цифр:

72 ×11= 7 (7+2) 2 = 792;

35 ×11 = 3 (3+5) 5 = 385.

Чтобы умножить 11 на двузначное число, сумма цифр которого 10 или больше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить единицу, а вторую и последнюю (третью) оставить без изменения:

94 ×11 = 9 (9+4) 4 = 9 (13) 4 = (9+1) 34 = 1034;

59×11 = 5 (5+9) 9 = 5 (14) 9 = (5+1) 49 = 649.

Чтобы двузначное число умножить на 22, 33. …99, надо последнее число представить в виде произведения однозначного числа (от 1 до 9) на 11, т.е.

44= 4 × 11; 55 = 5×11 и т. д.

Затем произведение первых чисел умножить на 11.

48 × 22 =48 × 2 × (22 : 2) = 96 × 11 =1056;

24 × 22 = 24 × 2 × 11 = 48 × 11 = 528;

23 ×33 = 23 × 3× 11 = 69 × 11 = 759;

18 × 44 = 18 × 4 × 11 = 72 × 11 = 792;

16 × 55 = 16 × 5 × 11 = 80 × 11 = 880;

16 × 66 = 16 × 6 × 11 = 96 × 11 = 1056;

14 × 77 = 14 × 7 × 11 = 98 × 11 = 1078;

12 × 88 = 12 × 8 × 11 = 96 × 11 = 1056;

8 × 99 = 8 × 9 × 11 = 72 × 11 = 792.

Кроме того, можно применить закон об одновременном увеличении в равное число раз одного сомножителя и уменьшении другого.

Умножение на число, оканчивающееся на 5

Чтобы четное двузначное число умножить на число, оканчивающееся на 5, следует применить правило: если один из сомножителей увеличить в несколько раз, а другой – уменьшить во столько же раз, произведение не изменится.

44 × 5 = (44 : 2) × 5 × 2 = 22 × 10 = 220;

28 × 15 = (28 : 2) × 15 × 2 = 14 × 30 = 420;

32 × 25 = (32 : 2) × 25 × 2 = 16 × 50 = 800;

26 × 35 = (26 : 2) × 35 × 2 = 13 × 70 = 910;

36 × 45 = (36 : 2) × 45 × 2 = 18 × 90 = 1625;

34 × 55 = (34 : 2) × 55 × 2 = 17 × 110 = 1870;

18 × 65 = (18 : 2) × 65 × 2 = 9 × 130 = 1170;

12 × 75 = (12 : 2) × 75 × 2 = 6 × 150 = 900;

14 × 85 = (14 : 2) × 85 × 2 = 7 × 170 = 1190;

12 × 95 = (12 : 2) × 95 × 2 = 6 × 190 = 1140.

При умножении на 65, 75, 85, 95 числа следует брать небольшие, в пределах второго десятка. В противном случае вычисления усложнятся.

Умножение и деление на 25, 50, 75, 125, 250, 500

Для того, чтобы устно научиться умножать и делить на 25 и 75, надо хорошо знать признак делимости и таблицу умножения на 4.

На 4 делятся те, и только те числа, у которых две последние цифры числа выражают число, делящееся на 4.

Например:

124 делится на 4, так как 24 делится на 4;

1716 делится на 4, так как 16 делится на 4;

1800 делится на 4, так как 00 делится на 4

Правило. Чтобы число умножить на 25, надо это число разделить на 4 и умножить на 100.

Примеры:

484 × 25 = (484 : 4) × 25 × 4 = 121 × 100 = 12100

124 × 25 = 124 : 4 × 100 = 3100

Правило. Чтобы число разделить на 25, надо это число разделить на 100 и умножить на 4.

Примеры:

12100 : 25 = 12100 : 100 × 4 = 484

31100 : 25 = 31100 :100 × 4 = 1244

Правило. Чтобы число умножить на 75, надо это число разделить на 4 и умножить на 300.

Примеры:

32 × 75 = (32 :4) × 75 × 4 = 8 × 300 = 2400

48 × 75 = 48 : 4 × 300 = 3600

Правило. Чтобы число разделить на 75, надо это число разделить на 300 и умножить на 4.

Примеры:

2400 : 75 = 2400 : 300 × 4 = 32

3600 : 75 = 3600 : 300 × 4 = 48

Правило. Чтобы число умножить на 50, надо это число разделить на 2 и умножить на 100.

Примеры:

432× 50 = 432 :2 × 50 × 2 = 216 × 100 = 21600

848 × 50 = 848 : 2 × 100 = 42400

Правило. Чтобы число разделить на 50, надо это число разделить на 100 и умножить на 2.

Примеры:

21600 : 50 = 21600 : 100 × 2 = 432

42400 : 50 = 42400 : 100 × 2 = 848

Правило. Чтобы число умножить на 500, надо это число разделить на 2 и умножить на 1000.

Примеры:

428 × 500 = (428 :2) × 500 × 2 = 214 × 1000 = 214000

2436 × 500 = 2436 : 2 × 1000 = 1218000

Правило. Чтобы число разделить на 500, надо это число разделить на 1000 и умножить на 2.

Примеры:

214000 : 500 = 214000 : 1000 × 2 = 428

1218000 : 500 = 1218000 : 1000 × 2 = 2436

Прежде чем научиться умножать и делить на 125, надо хорошо знать таблицу умножения на 8 и признак делимости на 8.

Признак. На 8 делятся те и только те числа, у которых три последние цифры выражают число, делящееся на 8.

Примеры:

3168 делится на 8, так как 168 делится на 8;

5248 делится на 8, так как 248 делится на 8;

12328 делится на 8, так как 324 делится на 8.

Чтобы узнать, делится ли трехзначное число, оканчивающееся цифрами 2, 4, 6. 8. на 8, нужно к числу десятков прибавить половину цифр единиц. Если полученный результат будет делиться на 8, то исходное число делится на 8.

Примеры:

632 : 8, так как т.е. 64 : 8;

712 : 8, так как  т.е. 72 : 8;

304 : 8, так как  т.е. 32 : 8;

376 : 8, так как  т.е. 40 : 8;

208 : 8, так как  т.е. 24 : 8.

Правило. Чтобы число умножить на 125, надо это число разделить на 8 и умножить на 1000. Чтобы число разделить на 125, надо это число разделить на 1000 и умножить

на 8.

Примеры:

32 × 125 = (32 : 8) × 125 × 8 = 4 × 1000 = 4000;

72 × 125 = 72 : 8 × 1000 = 9000;

4000 : 125 = 4000 : 1000 × 8 = 32;

9000 : 125 = 9000 : 1000 × 8 = 72.

Правило. Чтобы число умножить на 250, надо это число разделить на 4 и умножить на 1000.

Примеры:

36 × 250 = (36 : 4) × 250 × 4 = 9 × 1000 = 9000;

44 × 250 = 44 : 4 × 1000 = 11000.

Правило. Чтобы число разделить на 250, надо это число разделить на 1000 и умножить на 4.

Примеры:

9000 : 250 = 9000 : 1000 ×4 = 36;

11000 : 250 = 11000 : 1000 ×4 = 44

Умножение и деление на 37

Прежде чем научиться устно умножать и делить на 37, надо хорошо знать таблицу умножения на три и признак делимости на три, который изучается в школьном курсе.

Правило. Чтобы умножить число на 37, надо это число разделить на 3 и умножить на 111.

Примеры:

24 × 37 = (24 : 3) × 37 × 3 = 8 × 111 = 888;

27 × 37 = (27 : 3) × 111 = 999.

Правило. Чтобы число разделить на 37, надо это число разделить на 111 и умножить на 3

Примеры:

999 : 37 = 999 :111 × 3 = 27;

888 : 37 = 888 :111 × 3 = 24.

Умножение на 111

Научившись умножать на 11, легко умножить на 111, 1111. и т. д. число, сумма цифр которого меньше 10.

Примеры:

24 × 111 = 2 (2+4) (2+4) 4 = 2664;

36 ×111 = 3 (3+6) (3+6) 6 = 3996;

17 × 1111 = 1 (1+7) (1+7) (1+7) 7 = 18887.

Вывод. Чтобы число умножить на 11, 111. и т. д., надо мысленно цифры этого числа раздвинуть на два, три и т. д. шагов, сложить цифры и записать между раздвинутыми цифрами.

Умножение двух рядом стоящих чисел

Примеры:

1) 12 ×13 = ?

1 × 1 = 1

1 × (2+3) = 5

2 × 3 = 6

156

2) 23 × 24 = ?

2 × 2 = 4

2 × (3+4) = 14

3 × 4 = 12

552

3) 32 × 33 = ?

3 × 3 = 9

3 × (2+3) = 15

2 × 3 = 6

1056

4) 75 × 76 = ?

7 × 7 = 49

7 × (5+6) = 77

5 × 6 = 30

5700

Проверка:

×12

13

36

12_

156

Проверка:

× 23

24

92

46_

552

Проверка:

× 32

33

96

96_

1056

Проверка:

× 75

76

450

525_

5700

Вывод. При умножении двух рядом стоящих чисел надо сначала перемножить цифры десятков, затем цифру десятков умножить на сумму цифр единиц и, наконец, надо перемножить цифры единиц. Получим ответ (см. примеры)

Умножение пары чисел, у которых цифры десятков одинаковые, а сумма цифр единиц составляет 10

Пример:

24 × 26 = (24 – 4) × (26 + 4) + 4 × 6 = 20 × 30 + 24 = 624.

Числа 24 и 26 округляем до десятков, чтобы получить число сотен, и к числу сотен прибавляем произведение единиц.

18 × 12 = 2 × 1 сот. + 8 × 2 = 200 + 16 = 216;

16 × 14 = 2 × 1 × 100 + 6 × 4 = 200 + 24 = 224;

23 × 27 = 2 × 3 × 100 + 3 × 7 = 621;

34 × 36 = 3 × 4 сот. + 4 × 6 = 1224;

71 × 79 = 7 × 8 сот. + 1 × 9 = 5609;

82 × 88 = 8 × 9 сот. + 2 × 8 = 7216.

Можно решать устно и более сложные примеры:

108 × 102 = 10 × 11 сот. + 8 × 2 = 11016;

204 × 206 = 20 × 21 сот. +4 × 6 = 42024;

802 × 808 = 80 × 81 сот. +2 × 8 = 648016.

Проверка:

× 802

808

6416

6416__

648016

Умножение двузначных чисел, у которых сумма цифр десятков равна 10, а цифры единиц одинаковые.

Правило. При умножении двузначных чисел. у которых сумма цифр десятков равна 10, а цифры единиц одинаковые, надо перемножить цифры десятков. и прибавить цифру единиц, получим число сотен и к числу сотен прибавим произведение единиц.

Примеры:

72 × 32 = (7 × 3 + 2)сот. + 2 × 2 = 2304;

64 × 44 = (6 × 4 + 4) × 100 + 4 × 4 = 2816;

53 × 53 = (5 × 5 +3) × 100 + 3 × 3 = 2809;

18 × 98 = (1 × 9 + 8) × 100 + 8 × 8 = 1764;

24 × 84 = (2 × 8 + 4) ×100+ 4 × 4 = 2016;

63 × 43 = (6 × 4 +3) × 100 +3 × 3 = 2709;

35 × 75 = (3 × 7 + 5) × 100 +5 × 5 = 2625.

Умножение чисел, оканчивающихся на 1

Правило. При умножении чисел, оканчивающихся на 1, надо сначала перемножить цифры десятков и правее полученного произведения записать под этим числом сумму цифр десятков, а затем перемножить 1 на 1 и записать еще правее. Сложив столбиком, получим ответ.

Примеры:

1) 81 × 31 = ?

8 × 3 = 24

8 + 3 = 11

1 × 1 = 1

2511

81 × 31 = 2511

2) 21 × 31 = ?

2 × 3 = 6

2 +3 = 5

1 × 1 = 1

651

21 × 31 = 651

3) 91 × 71 = ?

9 × 7 = 63

9 + 7 = 16

1 × 1 = 1

6461

91 × 71 = 6461

Умножение двузначных чисел на 101, трехзначных – на 1001

Правило. Чтобы двузначное число умножить на 101, надо к этому числу приписать справа это же число.

Примеры:

32 × 101 = 3232

Проверка:

× 32

101

32

32__

3232

48 × 101 = 4848;

56 × 101 = 5656.

Правило. Чтобы трехзначное число умножить на 1001, надо к этому числу справа приписать это же число.

Примеры:

324 1001 = 324324

Проверка:

324

1001

324

324___

324324

648 1001 = 648648;

999 1001 = 999999.

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Математика
Уроки по математике для 3 класса «Умножение двузначного числа на однозначное»
Математика
Разное по математике для 4 класса «Решебник «Учусь работать с информацией»»
Математика
Презентации по математике для дошкольников «"Число О и цифра О" (подготовка к школе).»
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь