Рабочая программа

Планирование
Рабочая программа по математике 11 класс профиль, УМК Колягин Ю.М. алгебра и начала математического анализа и УМК Атанасян Л.С. геометрия
Елена Анатольевна Капустина
Содержимое публикации

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа с.п «Село Верхняя Эконь» Комсомольского муниципального района

Хабаровского края

«Рассмотрено» «Согласовано» «Утверждаю»

На заседанииЗаместитель руководителя по Директор МБОУ

педагогического советаУМР СОШ

школы_________ Астафьева Е.А. _____ Улановская С.М.

Протокол №

__________20__г.«__»_______20__г. «__»________20__г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

«Математика: алгебра и начала математического анализа, геометрия».

Уровень обучения: среднее общее образование

11 класс

Учитель: Капустина Елена Анатольевна

2020/2021 уч. год

Пояснительная записка

к рабочей программе по математике

(профильный уровень)

Рабочая программа углублённого уровня по математике для среднего общего образования разработана на основе Фундаментального ядра содержания общего образования и в соответствии с требованиями ФГОС к структуре и результатам освоения основных образовательных программ среднего общего образования. В ней соблюдается преемственность с рабочей программой основного общего образования. Практическая значимость школьного курса математики обусловлена тем, что его объектами являются фундаментальные структуры и количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий, и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе. Курс математики является одним из опорных курсов старшей школы: он обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при изучении математики способствует усвоению предметов гуманитарного цикла. Практические умения и навыки математического характера необходимы для трудовой и профессиональной подготовки школьников. Развитие у учащихся правильных представлений о сущности и происхождении математических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры и начал математического анализа в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе. Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности, воображения, математика развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Изучение курса математики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. При обучении математике формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса математики является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в математике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым курс математики занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию математических форм, математика тем самым вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает их пространственные представления. В соответствии с принятой Концепцией развития математического об-разования в Российской Федерации математическое образование должно решать, в частности, следующие ключевые задачи: — п предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе; — обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.; — предусматривает в основном общем и среднем общем образовании подготовку обучающихся в соответствии с их запросами к уровню под- готовки в сфере математического образования. Соответственно выделяются три направления требований к результатам математического образования: 1. Практико-ориентированное математическое образование (математика для жизни). 2. Математика для использования в профессии, не связанной с математикой. 3. Творческое направление, на которое нацелены обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях. Программа углублённого уровня предназначена для профильного изучения математики. При выполнении этой программы предъявляются требования, соответствующие направлению «математика для профессиональной деятельности». Вместе с тем выпускник получает возможность изучить математику на гораздо более высоком уровне, что создаст фундамент для дальнейшего серьезного изучения математики в вузе.

Рабочая программа учебного курса по математике для 11 класса разработана на основе программы среднего(полного) общего образования (профильный уровень) с учетом требований федерального государственного образовательного стандарта среднего(полного) общего образования и с учетом программ для общеобразовательных школ с использованием рекомендаций авторских программ Ю.М. Колягина, Л.С. Атанасяна.

Рабочая программа по алгебре составлена на основе:

- федерального компонента государственного образовательного стандарта, утвержденного Приказом Минобразования РФ от 05 03 2004 года № 1089;

- примерной программы, созданной на основе федерального компонента государственного образовательного стандарта. Стандарт основного общего образования по математике. //Вестник образования России.2004. №12 с.107-119//;

- федерального перечня учебников, утвержденных приказом министерства образования и науки РФ от 19 декабря 2012 г. № 1067, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих программы общего образования;

Санитарно-эпидемиологических требований к условиям и организации обучения в ОУ (утверждены постановлением Главного государственного санитарного врача РФ от 29.12.2010 № 189)

- Учебным планом МБОУ СОШ с.п. «Село Верхняя Эконь» на 2020-2021 учебный год.

-Годовым учебным план графиком МБОУ СОШ с.п. «Село Верхняя Эконь» на 2020-2021 учебный год.

Цель программы:

формированиепредставлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

овладение устным и письменным математическим языком, математическими знаниями и умениями,необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

развитиелогического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

воспитаниесредствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА.

Математическое образование играет важную роль и в практической, и в духовной жизни общества. Практическая сторона связана с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, духовная сторона — с интеллектуальным развитием человека, формированием характера и общей культуры. Без конкретных знаний по алгебре и началам математического анализа затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Изучение данного курса завершает формирование ценностно-смысловых установок и ориентаций учащихся в отношении математических знаний и проблем их использования в рамках среднего общего образования. Курс способствует формированию умения видеть и понимать их значимость для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определённой системой ценностей. Без базовой математической подготовки невозможно представить образование современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. Реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математике. Для жизни в современном обществе важным является формирование математического стиля мышления. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Алгебре и началам математического анализа принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления. Обучение математике даёт возможность развивать у учащихся точную, лаконичную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства, т. е. способствует формированию коммуникативной культуры, в том числе умению ясно, логично, точно и последовательно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме. Дальнейшее развитие приобретут и познавательные действия. Учащиеся глубже осознают основные особенности математики как формы человеческого познания, научного метода познания природы, а также возможные сферы и границы её применения. Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимыми компонентами общей культуры являются знакомство с методами познания действительности, представление о методах математики, их отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений. В результате целенаправленной учебной деятельности, осуществляемой в формах учебного исследования, учебного проекта, получит дальнейшее развитие способность к информационно-поисковой деятельности: самостоятельному отбору источников информации в соответствии с поставленными целями и задачами. Учащиеся научатся систематизировать информацию по заданным признакам, критически оценивать и интерпретировать информацию. Изучение курса будет способствовать развитию ИКТ-компетентности учащихся. Получит дальнейшее развитие способность к самоорганизации и саморегуляции. Учащиеся получат опыт успешной, целенаправленной и результативной учебно-предпрофессиональной деятельности; освоят на практическом уровне умение планировать свою деятельность и управлять ею во времени; использовать ресурсные возможности для достижения целей; осуществлять выбор конструктивных стратегий в трудных ситуациях; самостоятельно реализовывать, контролировать и осуществлять коррекцию учебной и познавательной деятельности на основе предварительного планирования и обратной связи, получаемой от педагогов. Содержательной основой и главным средством формирования и развития всех указанных способностей служит целенаправленный отбор учебного материала, который ведётся на основе принципов научности и фундаментальности, историзма, доступности и непрерывности, целостности и системности математического образования, его связи с техникой, технологией, жизнью. Содержание курса математики формируется на основе Фундаментального ядра школьного математического образования. Оно представлено в виде совокупности содержательных линий, раскрывающих наполнение Фундаментального ядра школьного математического образования применительно к старшей школе.

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ.

Базисный учебный (образовательный) план для изучения предмета «Математика» отводит на базовом уровне от 4 учебных часов в неделю и на углублённом уровне от 6 учебных часов (1-й вариант) или от 8 учебных часов (2-й вариант) в неделю в 10—11 классах. Поэтому на изучение алгебры и начал математического анализа отводится не менее 2,5 учебных часа в неделю в течение каждого года обучения для базового уровня, всего не менее 85 уроков и 4 или 6 учебных часов для углублённого уровня, всего 136 или 180 уроков соответственно.

Количество часов согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики в 11 классе отводится не менее 204 часов из расчета 6 часов в неделю. Распределение: алгебра и начала анализа – 136 ч в год(4ч/нед) и геометрия- 68 ч в год (2 часа/нед)

Данная рабочая программа рассчитана: профильный уровень 11 класс – 6 часов в неделю (алгебра 4 ч/н, геометрия 2 ч/н).

Информация о внесенных изменениях

На повторение курса 10 класса взято из итогового повторения 3 ч, что позволит актуализировать знания учащихся для изучения дальнейших тем курса.

Реализация рабочей программы осуществляется сиспользованием учебников:

Учебник для 11 класса общеобразовательных учреждений. Базовый и профильный уровень. Алгебра и начала математического анализа. Авторы: Ю.М. Колягин, М.В. Ткачёва, Н.Е. Фёдорова, М.И. Шабунин. Под редакцией А.Б. Жижченко. Москва. Просвещение.2011(печатный и электронный вид)

Учебник Геометрия 10-11 кл.Авторы Л.С.Атанасян, В.Ф. Бутузов С.Б. Кадомцев Москва. Просвещение 2011

Система уроков условна, но все же выделяются следующие виды:

Урок-лекция. Предполагаются совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.

Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования, решение различных задач, изучение свойств различных функций, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.

Урок-исследование.На урокеучащиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.

Комбинированный урок предполагает выполнение работ и заданий разного вида.

Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.

Урок-тест.Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.

Урок-зачет. Устный опрос учащихся по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.

Урок-самостоятельная работа.  Предлагаются разные виды самостоятельных работ: двухуровневая – уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5»; большой список заданий разного уровня, из которого учащийся решает их по своему выбору. Рядом с учеником на таких уроках – включенный компьютер, который он использует по своему усмотрению.

Урок-контрольная работа. Проводится на двух уровнях:

уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».

Компьютерное обеспечение уроков.

       В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения, а также различные электронные учебники.

Демонстрационный материал (слайды).

Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.                 

        Изучение многих тем в математике связано с знанием и пониманием свойств элементарных функций. Решение уравнений, неравенств, различных задач предполагает глубокое знание поведения элементарных функций. Научиться распознавать графики таких функций, суметь рассказать об их свойствах помогают компьютерные слайды.

   При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.

 Задания для устного счета.

Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.

Тренировочные упражнения.

    Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.

 Электронные учебники.

   Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала.На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.

      Использование компьютерных технологий в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес к изучению данного предмета.

В профильном* курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

знакомство с основными идеями и методами математического анализа;

• *совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• * формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

-проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

-решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

-планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

-построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

-самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт

Требования к предметным результатам освоенияпрофильногокурса

В результате изучения математики на базовом (*профильном) уровне в старшей школе ученик должен

Знать/понимать

значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

*идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

*значение идей, методов и результатов алгебры, и математического анализа для построения моделей реальных процессов и ситуаций;

возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

*различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

*роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

*применять понятия, связанные с делимостью целых чисел, при решении математических задач;

находить корни многочленов с одной переменной, раскладывать многочлены на множители;

*выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

определять значение функции по значению аргумента при различных способах задания функции;

строить графики изученных функций, выполнять преобразования графиков;

описывать по графику и по формуле поведение и свойства функций;

решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь

находить сумму бесконечно убывающей геометрический прогрессии;

вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

исследовать функции и строить их графики с помощью производной,;

решать задачи с применением уравнения касательной к графику функции;

решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

вычислять площадь криволинейной трапеции;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства

Уметь

решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

доказывать несложные неравенства;

решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

находить приближенные решения уравнений и их систем, используя графический метод;

*решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;

сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;

навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;


5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
8) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

3. В предметном направлении:

знаение математической науки для решения задач, возникающих в теории и

практике; широту и ограниченность применения математических методов к

анализу и исследованию процессов и явлений в природе и обществе;

• значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

• идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач

математики;

• значение идей, методов и результатов алгебры и математического анализа для

построения моделей реальных процессов и ситуаций;

• возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

• универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

• различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

• роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

• вероятностных характер различных процессов и закономерностей окружающего мира

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ И НАЧАЛ МАТЕМАТИЧЕСКОГО АНАЛИЗА.

Элементы теории множеств и математической логики.

-свободно оперировать понятиями: множество, пустое, конечное и бесконечное множества, элемент множества, подмножество, пересечение, объединение и разность множеств;

— применять числовые множества на координатной прямой: отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;

— проверять принадлежность элемента множеству;

— находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

Здесь и далее — знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

— задавать множества перечислением и характеристическим свойством;

— оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

— проводить доказательные рассуждения для обоснования истинности утверждений;

— оперировать понятием определения, основными видами определений и теорем;

— понимать суть косвенного доказательства;

— оперировать понятиями счётного и несчётного множества;

— применять метод математической индукции для проведения рассуждений и доказательств при решении задач.

В повседневной жизни и при изучении других предметов:

— использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

— проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов;

— использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа и выражения.

— Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

— понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

— переводить числа из одной системы записи (системы счисления) в другую;

— доказывать и использовать признаки делимости, суммы и произведения при выполнении вычислений и решении задач;

— выполнять округление рациональных и иррациональных чисел с заданной точностью; — сравнивать действительные числа разными способами;

— упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше второй; — находить НОД и НОК разными способами и использовать их при решении задач;

— выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;

— выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений;

— свободно оперировать числовыми множествами при решении задач;

— понимать причины и основные идеи расширения числовых множеств;

— владеть основными понятиями теории делимости при решении стандартных задач;

— иметь базовые представления о множестве комплексных чисел;

— свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;

— владеть формулой бинома Ньютона;

— применять при решении задач теорему о линейном представлении НОД, Китайскую теорему об остатках, Малую теорему Ферма;

— применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;

— применять при решении задач цепные дроби, многочлены с действительными и целыми коэффициентами;

— владеть понятиями: приводимые и неприводимые многочлены; применять их при решении задач;

— применять при решении задач Основную теорему алгебры; простейшие функции комплексной переменной как геометрические преобразования.

В повседневной жизни и при изучении других предметов:

— выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближённых вычислений, используя разные способы сравнений;

— записывать, сравнивать, округлять числовые данные;

— использовать реальные величины в разных системах измерения;

— с оставлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

— Свободно оперировать понятиями: уравнение; неравенство; равносильные уравнения и неравенства; уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве; равносильные преобразования уравнений;

— решать разные виды уравнений и неравенств, и их систем, в том числе некоторые уравнения третьей и четвёртой степеней, дробно-рациональные и иррациональные;

— овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;

— применять теорему Безу к решению уравнений;

— применять теорему Виета для решения некоторых уравнений степени выше второй;

— понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

— владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

— использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

— решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

— владеть разными методами доказательства неравенств;

— решать уравнения в целых числах;

— изображать на плоскости множества, задаваемые уравнениями, неравенствами и их системами;

— свободно использовать тождественные преобразования при решении уравнений и систем уравнений;

— свободно определять тип и выбирать метод решения показательных и логарифмических уравнений, и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;

— свободно решать системы линейных уравнений;

— решать основные типы уравнений и неравенств с параметрами;

— применять при решении задач неравенства Коши—Буняковского, Бернулли;

В повседневной жизни и при изучении других предметов:

— составлять и решать уравнения, неравенства, их системы при решении задач из других учебных предметов;

— выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем, при решении задач из других учебных предметов;

— составлять и решать уравнения и неравенства с параметрами при решении задач из других учебных предметов;

— составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

— использовать программные средства при решении отдельных классов уравнений и неравенств.

Функции

- Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции; уметь применять эти понятия при решении задач;

— владеть понятием: степенная функция; строить её график и уметь применять свойства степенной функции при решении задач;

— владеть понятиями: показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач; — владеть понятием: логарифмическая функция; строить её график и уметь применять свойства логарифмической функции при решении за- дач; — владеть понятием: тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач; — владеть понятием: обратная функция; применять это понятие при решении задач; — применять при решении задач свойства функций: чётность, периодичность, ограниченность;

— применять при решении задач преобразования графиков функций;

— владеть понятиями: числовые последовательности, арифметическая и геометрическая прогрессии;

— применять при решении задач свойства и признаки арифметической и геометрической прогрессий;

— владеть понятием: асимптота; уметь его применять при решении задач;

— применять методы решения простейших дифференциальных уравнений первого и второго порядков.

В повседневной жизни и при изучении других учебных предметов:

— определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, точки перегиба, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;

— определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.).

Элементы математического анализа

— Владеть понятием: бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;

— применять для решения задач теорию пределов;

— владеть понятиями: бесконечно большие числовые последовательности и бесконечно малые числовые последовательности; уметь сравнивать бесконечно большие и бесконечно малые последовательности;

— владеть понятиями: производная функции в точке, производная функции;

— вычислять производные элементарных функций и их комбинаций;

— исследовать функции на монотонность и экстремумы;

— строить графики и применять их к решению задач, в том числе с параметром;

— владеть понятием: касательная к графику функции; уметь применять его при решении задач;

— владеть понятиями: первообразная, определённый интеграл;

— применять теорему Ньютона—Лейбница и её следствия для решения задач;

— свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;

— свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость; — оперировать понятием первообразной для решения задач;

— овладеть основными сведениями об интеграле Ньютона—Лейбница и его простейших применениях;

— оперировать в стандартных ситуациях производными высших порядков;

— уметь применять при решении задач свойства непрерывных функций;

— уметь применять при решении задач теоремы Вейерштрасса;

— уметь выполнять приближённые вычисления (методы решения уравнений, вычисления определённого интеграла);

— уметь применять приложение производной и определённого интеграла к решению задач естествознания;

— владеть понятиями: вторая производная, выпуклость графика функции; уметь исследовать функцию на выпуклость.

В повседневной жизни и при изучении других учебных предметов:

— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов, интерпретировать полученные результаты.

Комбинаторика, вероятность и статистика, логика и теория графов

— Оперировать основными описательными характеристиками числового набора; понятиями: генеральная совокупность и выборка;

— оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей; вычислять вероятности событий на основе подсчёта числа исходов;

— владеть основными понятиями комбинаторики и уметь применять их при решении задач;

— и меть представление об основах теории вероятностей;

— и меть представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;

— иметь представление о математическом ожидании и дисперсии случайных величин;

— иметь представление о совместных распределениях случайных величин;

— понимать суть закона больших чисел и выборочного метода измерения вероятностей;

— иметь представление о нормальном распределении и примерах нормально распределённых случайных величин;

— иметь представление о корреляции случайных величин;

— иметь представление о центральной предельной теореме;

— иметь представление о выборочном коэффициенте корреляции и линейной регрессии;

— иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и её уровне значимости;

— иметь представление о связи эмпирических и теоретических распределений;

— иметь представление о кодировании, двоичной записи, двоичном дереве;

— владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;

— иметь представление о деревьях и уметь применять его при решении задач;

— владеть понятием: связность; уметь применять компоненты связности при решении задач;

— уметь осуществлять пути по рёбрам, обходы рёбер и вершин графа;

— иметь представление об Эйлеровом и Гамильтоновом пути; иметь представление о трудности задачи нахождения Гамильтонова пути;

— владеть понятиями: конечные счётные множества; счётные множества; уметь применять их при решении задач;

— уметь применять метод математической индукции;

— уметь применять принцип Дирихле при решении задач.

В повседневной жизни и при изучении других предметов:

— вычислять или оценивать вероятности событий в реальной жизни;

— выбирать методы подходящего представления и обработки данных.

Текстовые задачи

— Решать разные задачи повышенной трудности;

— анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;

— строить модель решения задачи, проводить доказательные рассуждения при решении задачи;

—решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

— анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

— переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни и при изучении других предметов:

— решать практические задачи и задачи из других предметов.

История и методы математики

— Иметь представление о вкладе выдающихся математиков в развитие науки;

— понимать роль математики в развитии России;

— использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

— применять основные методы решения математических задач;

— на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

— применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;

— пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;

— применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики).

Содержание обучение

11 класс

1. Тригонометрические функции -19ч.

Содержит материал, который поможет учащимся глубже понять математических методов в задачах физики и геометрии.

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции y=cosх и её график. Свойства функции y=sinх и её график. Свойства функции y=tgх и её график. Обратные тригонометрические функции.

Основная цель – изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; научить строить графики тригонометрических функций, используя различные приемы построения графиков.

Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы sin(-x)=-sin x и cos(-x)=cos x выражают свойства нечетности и четности функций y=sin x и y=cos x соответственно.

Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции y=cos x.С помощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.

Набазовом уровне обратные тригонометрические функции даются в ознакомительном плане. Рекомендуется также рассмотреть графики функции y=│cos х│, y= а+cos х, y= cos (х+а), y= cos ах, y= а cos х, где а – некоторое число.

Учебная цель – введение понятия тригонометрической функции, формирование умений находить область определения и множество значения тригонометрических функций; обучение исследованию тригонометрических функций на четность и нечетность и нахождению периода функции; изучение свойств функции y = cos х, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; изучение свойств функции y = sin х, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; ознакомление со свойствами функций y = tg x и y = ctg x, изучение свойств функции y = cos х, обучение построению графиков функций и применению свойств функций при решении уравнений и неравенств;

На профильном уровне дополнительно изучаются обратные тригонометрическими функциями, их свойствами и графиками.

В результате изучения главы «Тригонометрические функции» учащиеся должны знать основные свойства тригонометрических функций, уметь строить их графики и распознавать функции по данному графику, уметь отвечать на вопросы к главе, а также решать задачи этого типа.

2. Производная и её геометрический смысл-22ч

Изложение материала ведется на наглядно-интуитивном уровне: многие формулы не доказываются, а только поясняются или принимаются без доказательств.

Придел последовательности. Непрерывность функции. Определение производной. Правило дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

Основная цель – показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с производными границами, с построением графиков функций. Прежде всего, следует показать, что функции, графиками которых являются кривые, описывают важные физические и технические процессы.

Усвоение геометрического смысла производной и написание уравнения касательной к графику функции в заданной точке является обязательным для всех учащихся.

Основная цель (профильный уровень) дополнительно – знакомство с определением предела числовой последовательности, свойствами сходящихся последовательностей, обучение нахождению пределов последовательностей, доказательству сходимости последовательности к заданному числу; обучение выявлению непрерывных функций с опорой на определение непрерывности функции; знакомство с понятием производной функции в точке и её физическим смыслом, формирование начальных умений находить производные элементарных функций на основе определения производной.

Овладение правилами дифференцирования суммы, произведения и частного двух функций, вынесения постоянного множителя за знак производной; знакомство с дифференцированием сложных функций иправилам нахождения производной обратной функции; обучение использованию формулы производной степенной функции f (x) = xp для любого действительного p; формирование умений находить производные элементарных функций; знакомство с геометрическим смыслом производной обучение составлению уравнений касательной к графику функции в заданной точке.

В результате изучения главы «Производная и её геометрический смысл» учащиеся должны знать определение производной, основные правила дифференцирования и формулы производных элементарных функций; понимать геометрический смысл производной; уметь записывать уравнение касательной к графику функции в заданной точке решать упражнения данного типа. Иметь представление о пределе последовательности, пределе и непрерывности функции и уметь решать упражнения на применение понятия производной.

3.Применение производной к исследованию функций-16ч.

При изучении материала широко используются знания, полученные учащимися в ходе работы над предыдущей темой. Показать возможности производной в исследовании свойств функций и построении их графиков.

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

Основная цель (базовый уровень) – является демонстрация возможностей производной в исследовании свойств функций и построении их графиков и применение производной к решению прикладных задач на оптимизацию.

Основная цель (профильный уровень) дополнительно – применение теоремы Лагранжа для обоснования достаточного условия возрастания и убывания функции, теоремы Ферма и её геометрическому смыслу, а также достаточному условию экстремума, знакомство с понятием асимптоты, производной второго порядка и её приложение к выявлению интегралов выпуклости функции, знакомство с различными прикладными программами, позволяющими построить график функции и исследовать его с помощью компьютера.

Учебная цель – обучение применению достаточных условий возрастания и убывания к нахождению промежутков монотонности функции; знакомство с понятиями точек экстремума функции, стационарных и критических точек, с необходимыми и достаточными условиями экстремума функции; обучение нахождению точек экстремума функции; обучение нахождению наибольшего и наименьшего значений функции с помощью производной; знакомство с понятием второй производной функции и её физическим смыслом; с применением второй производной для нахождения интегралов выпуклости и точек перегиба функции; формирование умения строить графики функций – многочленов с помощью первой производной, с привлечением аппарата второй производной.

В результате изучения главы «Применение производной к исследованию функций» учащиеся должны знать, какие свойства функции выявляются с помощью производной, уметь строить графики функций, решать задачи на нахождения наибольшего (наименьшего) значения функции данного типа упражнений.

4 . Первообразная и интеграл-15ч

Рассматриваются первообразные конкретных функций и правила нахождения первообразных.

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Применение интегралов для решения физических задач.

Основная цель ознакомление учащихся с понятием первообразной и обучение нахождению площадей криволинейных трапеций. Площадь криволинейной трапеции определяется как предел интегральных сумм. Большое внимание уделяется приложениям интегрального исчисления к физическим и геометрическим задачам. Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона-Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона-Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с её помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций.Знакомство с простейшими дифференциальными уравнениями.

Учебная цель – ознакомление с понятием первообразной, обучение нахождению первообразной для степеней и тригонометрических функций; ознакомление с понятием интегрирования и обучение применению правил интегрирования при нахождении первообразных; формирование понятия криволинейной трапеции, ознакомление с понятием определенного интеграла, обучение вычислению площади криволинейной трапеции в простейших случаях; ознакомить учащихся с применением интегралов для физических задач, научить решать задачи на движение с применением интегралов.

В результате изучения главы «Первообразная и интеграл» учащиеся должны знать правила нахождения первообразных основных элементарных функций, формулу Ньютона-Лейбница и уметь их применять к вычислению площадей криволинейных трапеций при решении задач данного типа.

5. Комбинаторика -13ч

Содержит основные формулы комбинаторики, применение знаний при выводе формул алгебры, вероятность и статистическая частота наступления события. Тема не насыщена теоретическими сведениями и доказательствами, она имеет, прежде всего, общекультурное и общеобразовательное значение.

Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель – ознакомление с основными формулами комбинаторики и их применением при решении задач, развивать комбинаторное мышление учащихся, ознакомить с теорией соединений, обосновать формулу бинома Ньютона. Основной при выводе формул числа перестановок и размещений является правило умножения, понимание которого формируется при решении различных прикладных задач. Свойства числа сочетаний доказываются и затем применяются при организации и исследовании треугольника Паскаля.

Учебная цель – овладение одним из основных средств подсчета числа различных соединений, знакомство учащихся с размещениями с повторениями. Знакомство с первым видом соединений – перестановками; демонстрация применения правила произведения при выводе формулы числа перестановок из п элементов. Введение понятия размещения без повторений из м элементов по п; создание математической модели для решения комбинаторных задач, сводимых к подсчету числа размещений; знакомство с сочетаниями и их свойствами; решение комбинаторных задач, сводящихся к подсчету числа сочетаний из м элементов по п; обоснованное конструирование треугольника Паскаля; обучение возведению двучлена в натуральную степень с использованием формулы Ньютона. Составление порядочных множеств (образование перестановок); составление порядочных подмножеств данного множества (образование размещений); доказательство справедливости формул для подсчета числа перестановок с повторениями и числа сочетаний с повторениями, усвоение применения метода математической индукции.

В результате изучения главы «Комбинаторика» учащиеся должны знать, основные формулы комбинаторики, уметь находить вероятность случайных событий в простейших случаях, использовать классическое определение вероятности и применения их при решении задач данного типа.

6. Элементы теории вероятностей-11ч

В программу включено изучение лишь отдельных элементов теории вероятностей. Приэтом введению каждого понятия предшествует неформальное объяснение, раскрывающее сущность данного понятия, его происхождение и реальный смысл. Так вводятся понятия случайных, достоверных и невозможных событий, связанных с некоторым испытанием; определяются и иллюстрируются операции над событиями. Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.

Основная цель – сформировать понятие вероятности случайного независимого события. Исследование простейших взаимосвязей между различными событиями, а также нахождению вероятностей видов событий через вероятности других событий. Классическое определение вероятности события с равновозможными элементарными исходами формируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятие геометрической вероятности и статистической вероятности вводились на интуитивном уровне. При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.

Учебная цель – знакомство с различными видами событий, комбинациями событий; введение понятия вероятности события и обучение нахождению вероятности случайного события с очевидными благоприятствующими исходами; знакомство с теоремой о вероятности суммы двух несовместных событий и её применением, в частности при нахождении вероятности противоположного события; и с теоремой о вероятности суммы двух производных событий; интуитивное введение понятия независимых событий; обучение нахождению вероятности произведения двух независимых событий.

В результате изучения главы «Элементы теории вероятностей» учащиеся должны уметь находить вероятности случайных событий с помощью классического определения вероятности при решении упражнений данного типа, иметь представление о сумме и произведении двух событий, уметь находить вероятность противоположного события, интуитивно определять независимые события и находить вероятность одновременного наступления независимых событий в задачах.

7. * Комплексные числа -14ч

Сложение и умножение комплексных чисел. Модуль комплексного числа. Вычитание и деление комплексных чисел. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Свойства модуля и аргумента. Квадратное уравнение с комплексным неизвестным. Примеры решения алгебраических уравнений. Основные цели — завершение формирования представления о числе; обучение действиям с комплексными числами и демонстрация решений различных уравнений на множестве комплексных чисел.

Рассматриваются четыре арифметических действия с комплексными числами, заданными в алгебраической форме. Вводится понятие комплексной плоскости, на которой иллюстрируется геометрический смысл модуля комплексного числа и модуля разности комплексных чисел. Рассматривается переход от алгебраической к тригонометрической форме записи комплексного числа и обратный переход. Желательно обучить учащихся технических и физико-математических классов возведению в степень комплексного числа, заданного в тригонометрической форме.

8. Итоговое повторение курса алгебры и начал математического анализа-26ч

Уроки итогового повторения имеют своей целью не только восстановление в памяти учащихся основного материала, но и обобщение, уточнение систематизацию знаний по алгебре и началам математического анализа за курс средней школы.

Повторение предлагается проводить по основным содержательно-методическим линиям и целесообразно выстроить в следующим порядке: вычисления и преобразования, уравнения и неравенства, функции, начала математического анализа.

При проведении итогового повторения предлагается широкое использование и комбинирование различных типов уроков (лекций, семинаров, практикумов, консультаций и т.е.) с целью быстрого охвата большого по объему материала. Необходимым элементом уроков итогового повторения является самостоятельная работа учащихся. Она полезна как самим учащимся, так и учителю для осуществления обратной связи. Формы проведения самостоятельных работ разнообразны: от традиционной работы с двумя, тремя заданиями до тестов и работ в форме рабочей тетрадей с заполнением пробелов в приведенных рассуждениях.

В результате обобщающего повторения курса алгебры и начала анализа за 11 класс создать условия учащимся для выявления:

- владения понятием степени с рациональным показателем, умение выполнять тождественные преобразования и находить их значения;

- умения выполнять тождественные преобразования тригонометрических, иррациональных, показательных, логарифмических выражений;

- умения решать системы уравнений, содержащих одно или два уравнения (логарифмических, иррациональных, тригонометрических), решать неравенства с одной переменной на основе свойств функции;

- умения использовать несколько приемов при решении уравнений;

- решать уравнения с использованием равносильности уравнений; использовать график функции при решении неравенств (графический метод);

- умения находить производную функции;множество значений функции; область определения сложной функции; использовать четность и нечетность функции;

- умения исследовать свойства сложной функции; использовать свойство периодичности функции для решения задач; читать свойства функции по графику и распознавать графики элементарных функций;

- умения решать и проводить исследование решения текстовых задач на нахождение наибольшего (наименьшего) значения величины с применением производной;

-умения решать задачи параметрические на оптимизацию;

-умения решать комбинированные уравнения и неравенства; использовать несколько приемов при решении уравнений и неравенств;

-умения извлекать необходимую информацию из учебно-научных текстов; привести примеры, подобрать аргументы, сформулировать выводы.

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства.Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники.Вершины, ребра, грани многогранника. Развертка.Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела.Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

Цели:

Формировать умение выполнять дополнительные построения, сечения, выбирать метод решения, проанализировать условие задачи;

Научить владеть новыми понятиями, переводить аналитическую зависимость в наглядную форму и обратно;

Задачи:

Уметь решать задачи на построение сечений, нахождение угла между прямой и плоскостью;

Выполнять сложение и вычитание векторов в пространстве;

Находить площади поверхности многогранников;

Изучить основные свойства плоскости;

Рассмотреть взаимное расположение двух прямых, прямой и плоскости;

Изучить параллельность прямых и плоскостей, параллельность плоскостей, перпендикулярность прямых и плоскостей;

СОДЕРЖАНИЕ ПРОГРАММЫ

геометрия

11 класс (2ч в неделю, всего 68 ч)

Векторы в пространстве (6 ч.)

Метод координат в пространстве (15 ч.)

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цель:введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.

Цели:сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать анало­гию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осоз­нанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геомет­рии

О с н о в н а я ц е л ь – обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.

2.Цилиндр, конус, шар (16 ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Цель:выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометриче­ских тел. В ходе знакомства с теоретическим материалом темы зна­чительно развиваются пространственные представления уча­щихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круг­лых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм, и пирамид. Решать большое количество задач, что позволяет про­должить работу по формированию логических и графических умений.

О с н о в н а я ц е л ь – сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

3. Объем и площадь поверхности (17 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Цель:систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изу­чение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по анало­гии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к труд­ным разделам высшей математики. Поэтому нужные результа­ты устанавливать, руководствуясь больше наглядными со­ображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

Повторение (14 ч.)

Цель:повторение и систематизация материала 11 класса.

Цели:повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения;объёмы многогранников и тел вращения


ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики на базовом уровне ученик должен

знать/понимать1

значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

Геометрия

уметь

распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

анализировать в простейших случаях взаимное расположение объектов в пространстве;

изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

строить простейшие сечения куба, призмы, пирамиды;

решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

использовать при решении стереометрических задач планиметрические факты и методы;

проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

В результате изучения геометрии в 11 классе ученик должен знать и уметь:

соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; раз­личать и анализировать взаимное расположение фигур;

изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;

решать геометрические задачи, опираясь на изученные свой­ства планиметрических и стереометрических фигур и отноше­ний между ними, применяя алгебраический и тригонометри­ческий аппарат;

проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;

вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей простран­ственных тел и их простейших комбинаций;

применять координатно-векторный метод для вычисления отношений, расстояний и углов;

строить сечения многогранников;

Система оценивания

При проверке усвоения материала необходимо выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях, формировать компетенции:

-ключевые образовательные компетенции через развитие умений применять алгоритм решения уравнений, неравенств, систем уравнений и неравенств, текстовых задач, решения геометрических задач;

-компетенция саморазвития через развитие умений поставить цели деятельности, планирование этапов урока, самостоятельное подведение итогов;

-коммуникативная компетенция через умения работать в парах при решении заданий, обсуждении вариантов решения, умение аргументировать свою точку зрения;

-интеллектуальная компетенция через развития умений составлять краткую запись к задаче

-компетенция продуктивной творческой деятельности через развитие умений перевода заданий на математический язык

-информационная компетенция через формирование умения самостоятельно искать, анализировать и отбирать необходимую информацию посредством ИКТ

Промежуточная аттестация учебного курса математики осуществляется через математические диктанты, самостоятельные работы, контрольные работы по разделам учебного материала, тесты.

Предлагаются учащимся разноуровневые тесты, т.е. список заданий делится на две части - обязательную и необязательную. Обязательный уровень обеспечивает базовые знания для любого ученика. Необязательная часть рассчитана на более глубокие знания темы. Цель: способствовать развитию устойчивого умения и знания согласно желаниям и возможностям учащихся. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью. Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно записано решение.

Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3(удовлетворительно), 4 (хорошо), 5 (отлично).

Критерии и нормы оценки знаний, умений навыков обучающихся по математике.

1.Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой«5», если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4»ставится в следующих случаях:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущены одна ошибка или есть два

–три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущено более одной ошибки или более двух

–трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких

-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно, без наводящих вопросов учителя;

возможны одна

–две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

допущены один –два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

-незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

-незнание наименований единиц измерения;

-неумение выделить в ответе главное;

-неумение применять знания, алгоритмы для решения задач;

-неумение делать выводы и обобщения;

-неумение читать и строить графики;

-неумение пользоваться первоисточниками, учебником и справочниками;

-потеря корня или сохранение постороннего корня;

-отбрасывание без объяснений одного из них;

-равнозначные им ошибки;

-вычислительные ошибки, если они не являются опиской;

-логические ошибки.

3.2. К негрубым ошибкам следует отнести:

-неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного

-двух из этих признаков второстепенными;

-неточность графика;

-нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

-нерациональные методы работы со справочной и другой литературой;

-неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

-нерациональные приемы вычислений и преобразований;

-небрежное выполнение записей, чертежей, схем, графиков.

Рабочая программа для 11 класса рассчитана на 6 часа в неделю, всего 204 учебных часов в год, из них на изучение тем по алгебре и началам анализа отводится 136 часов, на изучение тем по геометрии –68 часов.

Курс математики 10 класса состоит из следующих предметов: «Алгебра и начала анализа»,

«Геометрия», «Элементы логики, комбинаторики, статистики и теории вероятности», которые изучаются блоками.

Изменение часов по некоторым темам основано на практическом опыте преподавателя математики в 11 классе.

Изменение часов по некоторым темам основано на практическом опыте преподавания математики в 11 классе.

Контрольных работ за год –11, одна из них итоговая. Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных, контрольных работ и математических диктантов.

Перенос раздела «Элементы комбинаторики, статистики и теории вероятностей» из курса 11 класса в курс 10 класса осуществляется для увеличения количества часов в 11 классе на итоговое повторение. Это необходимо для более тщательной подготовки учащихся к ЕГЭ.

Изучение курса алгебры и начал анализа в 10 классе заканчивается итоговой контрольной работой в форме тестирования. Текущий контроль

Осуществляется в виде самостоятельных работ, зачётов, письменных тестов, математических диктантов, устных и письменных опросов по теме урока, контрольных работ по разделам учебника.

Учебно - методическое обеспечение.

Учебники и учебные пособия:

Колягин Ю.М. Алгебра и математический анализ. 10 класс: учебник для общеобразовательных учреждений: базовый и профильный уровни /Ю.М. Колягин [и др.] под ред А.В.Жижченко - М.: Просвещение, 2011г. (печатный и электронный вид)

Колягин Ю.М. Алгебра и математический анализ. 11 класс: учебник для общеобразовательных учреждений: базовый и профильный уровни /Ю.М. Колягин [и др.] под ред А.В.Жижченко - М.: Просвещение, 2011г. (печатный и электронный вид)

Шабунин М.И. Алгебра и начала математического анализа 10 класс: дидактические материалы. Профильный уровень. М.:Просвещение, 2010

Шабунин М.И. Алгебра и начала математического анализа 11 класс: дидактические материалы. Профильный уровень. М.:Просвещение, 2010

Феодорова Н.Е. Изучение алгебры и начал математического анализа в 10 классе: книга для учителя/Феодорова Ткачева – М.:Просвещение, 2009

Дидактические материалы по алгебре и началам анализа для 10 и 11 класса /Б.И. Ивлев, С.И.Саакян, С.И.Шварцбург. М.: Просвещение ,2005

А.П.Ершова «Алгебра и геометрия. 10-11 класс» ( разноуровневые самостоятельные и контрольные работы»

Интернет-ресурсы

alexlarin.net

www.fipi.ru

ege.edu.ru

www.mioo.ru

www.1september.ru

www.math.ru

www.allmath.ru

www.uztest.ru

http://schools.techno.ru/tech/index.html

http://www.catalog.alledu.ru/predmet/math/more2.html

http://shade.lcm.msu.ru:8080/index.jsp

Учителям, преподающим математику на профильном уровне

http://kvant.mccme.ru/index.html

http://math.ournet.md/indexr.html

http://www.nsu/ru/mmf/tvims/probab.html

http://www.mccme.ru/mmmf-lrctures/books/

http://virlib.eunnet.net/mif/

http://195.19.32.10/physmath/index.htm

Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2010.

Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. – М.: Просвещение, 2010.

Научно-теоретический и методический журнал «Математика в школе»

Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика

Ковалева Г.И, Мазурова Н.И. геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. – Волгоград: Учитель, 2006.

Б.Г. Зив. Дидактические материалы по геометрии для 11 класса. – М. Просвещение, 2003.

В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. Рабочая тетрадь по геометрии для 11 класса. – М.: Просвещение, 2010.

Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2010.

С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2010.

Формы и средства контроля.

Для проведения контрольных работ используются:

«Программа общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы, - М.Просвещение, 2009. Составитель Т. А. Бурмистрова»

Шабунин М.И. Алгебра и начала математического анализа 10 класс: дидактические материалы. Профильный уровень. М.:Просвещение, 2010

Для организации текущих проверочных работ используются

1) Шабунин М.И. Алгебра и начала математического анализа 10 класс: дидактические материалы. Профильный уровень. М.:Просвещение, 2010

2) А.П.Ершова « Алгебра и геометрия. 10-11 класс» ( разноуровневые самостоятельные и контрольные работы»

Всего контрольных работ: 11 класс – 5

Календарно-тематическое планирование на учебный год: 2020/2021


Общее количество часов: 204


урока

Тема урока

Кол-во
часов

Планируемая

дата

Фактическая дата

Требования к уровню подготовки

Знать

Уметь

Раздел 1: Повторение - 3 ч

 1.

Показательные уравнения и неравенства

 2.

Логарифмические уравнения и неравенства

 3.

Тригонометрические уравнения и неравенства

Раздел 2: Тригонометрические функции - 19 ч

 4-5.

Область определения и множество значений тригонометрических функций.

Функции, Область определения и множество значений.

По графикам функций описывать их свойства (монотонность, ограниченность, чётность, нечётность, периодичность). Приводить примеры функций (заданных с помощью формулы или графика), обладающих заданными свойствами (например, ограниченности). Разъяснять смысл перечисленных свойств. Изображать графики сложных функций с помощью графопостроителей, описывать их свойства. Решать простейшие тригонометрические неравенства, используя график функции. Распознавать графики тригонометрических функций, графики обратных тригонометрических функций. Применять и доказывать свойства обратных тригонометрических функций. Строить графики элементарных функций, используя графопостроители, изучать свойства элементарных функций по их графикам, формулировать гипотезы о количестве корней уравнений, содержащих элементарные функции, и проверять их. Выполнять преобразования графиков элементарных функций: параллельный перенос, растяжение (сжатие) вдоль оси ординат. Применять другие элементарные способы построения графиков.

 6-8

Чётность, нечётность, периодичность тригонометрических функций.

С.р №1.

Свойства функции: периодичность.

 9-11

Свойства функции у = COS x и ее график.

С.р. №2.

Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функции: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания функции, наибольшее и наименьшее значения. Графическая интерпретация. Применение функциональных зависимостей в реальных процессах и явлениях.

Преобразование графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат и симметрия относительно прямой у=х, растяжение и сжатие вдоль координатных осей.

 12-14

Свойства функции у — sin x и ее график.

С.р. №3.

 15-16

Свойства и графики функций у = tgx и у = ctgx.

Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функции: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания функции, наибольшее и наименьшее значения Графическая интерпретация. Применение функциональных зависимостей в реальных процессах и явлениях.

Преобразование графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат и симметрия относительно прямой у=х, растяжение и сжатие вдоль координатных осей.

 17-19.

Обратные тригонометрические функции.

С.р. №4.

Обратная функция. Область определения и область значений обратной тригонометрической функции. График обратной функции.

 20-21

Урок обобщения и систематизации знаний.

22

Контрольная работа № 1 по теме «Тригонометрические функции»

Раздел 3: Векторы в пространстве - 6 ч

 23

Понятие вектора. Равенство векторов

Векторы. Модуль вектора, Равенство векторов,

- пользоваться языком геометрии для описания предметов окружающего мира;

- распознавать: геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры, выполнять чертежи по условию задачи, осуществлять преобразование фигур;

- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

- в простейших случаях строить сечения и развертки пространственных тел;

- проводить операции над векторами;

- вычислять длину и координаты вектора, угол между векторами;

- решать геометрические задачи, опираясь на изученные свойства фигур отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идей симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

-решать простейшие планиметрические задачи в пространстве;

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- описания реальных ситуаций на языке геометрии;

- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

- построения геометрическими инструментами (линейка, угольник, циркуль, транспортир).

24-25

Сложение и вычитание векторов. Умножение вектора на число

Сложение и вычитание векторов. Умножение вектора на число

26-27

Компланарные векторы

Компланарные векторы. Разложение по трем некомпланарным векторам.

 28

Зачёт № 1 по теме: "Векторы в пространстве"

Раздел 4: Производная и её геометрический смысл. - 22 ч

29-31

Предел последовательности.

С.р. №5.

Приводить примеры монотонной числовой последовательности, имеющей предел. Вычислять пределы последовательностей. Выяснять, является ли последовательность сходящейся.

 32-33

Предел функции.

 34.

Непрерывность функции.

Понятие о непрерывности функции.

Приводить примеры функций, являющихся непрерывными, имеющих вертикальную, горизонтальную асимптоту. Уметь по графику функции определять промежутки непрерывности и точки разрыва, если такие имеются. Записывать уравнение каждой из этих асимптот. Анализировать поведение функций на различных участках области определения, сравнивать скорости возрастания (убывания) функций.

 35-36

Определение производной

Понятие о производной функции, физический и геометрический смысл производной

Находить мгновенную скорость движения материальной точки.

37-39

Правила Дифференцирования.

С.р. №6.

Производные суммы, разности, произведения и частного.

40-41

Производная степенной функции.

Производная степенной функции.

 42-44

Производная элементарных функций.

С.р. №7.

Производные основных элементарных функций

Находить производные элементарных функций. Находить производные суммы, произведения и частного двух функций, производную сложной функции y = f (kx + b). Объяснять и иллюстрировать понятие предела последовательности. Приводить примеры последовательностей, имеющих предел и не имеющих предела. Пользоваться теоремой о пределе монотонной ограниченной последовательности. Выводить формулы длины окружности и площади круга. Объяснять и иллюстрировать понятие предела функции в точке. Приводить примеры функций, не имеющих предела в некоторой точке. Вычислять пределы функций.

 45-47

Геометрический смысл производной.

С.Р. №8.

Уравнение касательной к графику функции

Находить угловой коэффициент касательной к графику функции в заданной точке. Анализировать поведение функций на различных участках области определения. Находить асимптоты. Вычислять приращение функции в точке. Составлять и исследовать разностное отношение. Находить предел разностного отношения.

 48

Контрольная работа № 2 по теме: "Производная и её геометрический смысл"

49,50

Урок обобщения и систематизации знаний

Раздел 5: Метод координат в пространстве - 15 ч

51-56

Координаты точки и координаты вектора.

С.Р. №9.

Декартовы координаты в пространстве. Векторы, модуль вектора, равенство векторов, координаты векторов. Сложение векторов и умножение вектора на число, Компланарные векторы, разложение по трем некомпланарным векторам. Формула расстояния между двумя точками.

- пользоваться языком геометрии для описания предметов окружающего мира;

- распознавать: геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры, выполнять чертежи по условию задачи, осуществлять преобразование фигур;

- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

- в простейших случаях строить сечения и развертки пространственных тел;

- проводить операции над векторами;

- вычислять длину и координаты вектора, угол между векторами;

- решать геометрические задачи, опираясь на изученные свойства фигур отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идей симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

-решать простейшие планиметрические задачи в пространстве;

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- описания реальных ситуаций на языке геометрии;

- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

- построения геометрическими инструментами (линейка, угольник, циркуль, транспортир).

57-63

Скалярное произведение векторов.

С.Р. №10.

Угол между векторами. Скалярное произведение векторов. Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрии в окружающем мире.

 64

Контрольная работа № 3 по теме: "Метод координат в пространстве"

65

Зачёт № 2 по теме: "Метод координат в пространстве"

Раздел 6: Применение производной к исследованию функций - 16 ч

 66-67

Возрастание и убывание функции.

Промежутки возрастания и убывания функции, наибольшее и наименьшее значение функции

Находить промежутки возрастания и убывания функции. Доказывать, что заданная функция возрастает (убывает) на указанном промежутке.

 68-69.

Экстремумы функции.

Значения функции, точки экстремума (локального максимума и минимума).

Находить точки минимума и максимума функции.

 70-72

Наибольшее и наименьшее значения функции.

С.р. №11.

Наибольшее и наименьшее Значения функции, точки экстремума (локального максимума и минимума).

Находить наибольшее и наименьшее значения функции на отрезке. Находить наибольшее и наименьшее значения функции.

 73-74

Производная второго порядка, выпуклость и точки перегиба.

Наибольшее и наименьшее Значения функции, точки экстремума (локального максимума и минимума).

Находить вторую производную и ускорение процесса, описываемого с помощью формулы.

 75-78

Построение графиков функций.

С.Р. №12.

Применение производной к исследованию функций и построению графиков.

Исследовать функцию с помощью производной и строить её график.

 79,80

Урок обобщения и систематизации знаний

Применять производную при решении текстовых, геометрических, физических и других задач

 81

Контрольная работа № 4 по теме: "Применение производной к исследованию функций".

Раздел 7: Цилиндр, конус, шар. - 16 ч

 82-84

Цилиндр.

Цилиндр, усеченный цилиндр. Основание, высота, боковая поверхность, образующая, развертка. Осевое сечение и сечения параллельные основанию.

- пользоваться языком геометрии для описания предметов окружающего мира;

- распознавать: геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры, выполнять чертежи по условию задачи, осуществлять преобразование фигур;

- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

- в простейших случаях строить сечения и развертки пространственных тел;

- решать геометрические задачи, опираясь на изученные свойства фигур отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идей симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

-решать простейшие планиметрические задачи в пространстве;

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- описания реальных ситуаций на языке геометрии;

- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

- построения геометрическими инструментами (линейка, угольник, циркуль, транспортир).

85-88

Конус.

С.Р. №14.

Формулы площади поверхности конуса.

89-95

Сфера.

С.Р. №15.

Сфера и шар. Касательная плоскость к сфере. Площадь сферы.

96

Зачёт № 3 по теме: "Цилиндр, конус, шар"

97

Контрольная работа № 5 по теме: "Цилиндр, конус, шар"

Раздел 8: Первообразная и интеграл. - 15 ч

 98-99

Первообразная

Первообразная.

Вычислять приближённое значение площади криволинейной трапеции.

 100-101

Правила нахождения первообразных.

С.Р. №16.

Находить первообразные функций: y = xp, где p О R, y = sin x, y = cos x, y = tg x. Находить первообразные функций: f (x) + g(x), kf (x) и f (kx + b).

102-104

Площадь криволинейной трапеции. Интеграл и его вычисление.

С.Р. №17.

Понятие об определенном интеграле как площади криволинейной трапеции. Формула Ньютона- Лейбница.

Вычислять площади криволинейной трапеции с помощью формулы Ньютона—Лейбница. Находить приближённые значения интегралов.

105-107

Вычисление площадей фигур с помощью интегралов.

С.Р. №18.

Вычислять площадь криволинейной трапеции с помощью интеграла.

 108

Применение интегралов для решения физических задач

Примеры применения интеграла в физике и геометрии.

 109

Простейшие дифференциальные уравнения.

110-111

Урок обобщения и систематизации знаний

112

Контрольная работа № 6 по теме: "Первообразная и интеграл"

Раздел 9: Объёмы тел. - 17 ч

 113-115

Объём прямоугольного параллелепипеда.

С.Р. №19.

Понятие об объеме тела. Формулы объема прямоугольного параллелепипеда.

- пользоваться языком геометрии для описания предметов окружающего мира;

- распознавать: геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры, выполнять чертежи по условию задачи, осуществлять преобразование фигур;

- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

- в простейших случаях строить сечения и развертки пространственных тел;

- решать геометрические задачи, опираясь на изученные свойства фигур отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идей симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

-решать простейшие планиметрические задачи в пространстве;

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- описания реальных ситуаций на языке геометрии;

- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

- построения геометрическими инструментами (линейка, угольник, циркуль, транспортир).

 116-117

Объём прямой призмы и цилиндра

Формула объема цилиндра.

 118-122

Объём наклонной призмы, пирамиды и конуса.

С.Р. №20.

Формулу объема пирамиды.

123-127

Объём шара и площадь сферы.

С.Р. №21.

Формулу объема шара. Формулу площади сферы.

128

Контрольная работа № 7 по теме: "Объёмы тел"

129

Зачёт № 4 по теме: "Объёмы тел"

Раздел 10: Комбинаторика - 13 ч

130-131

Математическая индукция

Решение комбинаторных задач.

Применять при решении задач метод математической индукции

132-133

Правило произведения. Размещения с повторением

Применять правило произведения при выводе формулы числа перестановок.

 134-135

Перестановки.

Находить число перестановок с повторениями.

 136

Размещения без повторения.

137-139

Сочетания без повторений и бином Ньютона

С.Р. №22.

Решать комбинаторные задачи, сводящиеся к подсчёту числа сочетаний с повторениями. Применять формулу бинома Ньютона. При возведении бинома в натуральную степень находить биномиальные коэффициенты при помощи треугольника Паскаля.

140

Сочетания с повторениями.

141

Контрольная работа № 8 по теме: "Комбинаторика"

142

Урок обобщения и систематизации знаний

Раздел 11: Элементы теории вероятностей. - 11 ч

143-144

Вероятность события.

Приводить примеры случайных, достоверных и невозможных событий. Знать определение вероятности события в классическом понимании. Приводить примеры несовместных событий.

 145-146

Сложение вероятностей.

С.Р. №23.

Знать определение суммы и произведения событий. Находить вероятность суммы несовместных событий.

147

Условная вероятность. Независимость событий

148-150

Вероятность произведения независимых событий.

С.Р. №24.

Иметь представление о независимости событий и находить вероятность совместного наступления

таких событий.

 151

Формула Бернулли

152

Урок обобщения и систематизации знаний

153

Контрольная работа № 9 по теме «Элементы теории вероятности»

Раздел 12: Комплексные числа - 14 ч

154-155

Определение комплексных чисел. Сложение и умножение комплексных чисел.

Выполнять вычисления с комплексными числами: сложение, вычитание, умножение, деление. Изображать комплексные числа точками на комплексной плоскости. Интерпретировать на комплексной плоскости сложение и вычитание комплексных чисел. Находить корни квадратных уравнений с действительными коэффициентами. Доказывать свойства комплексно сопряжённых чисел.

156-158

Комплексно сопряженные числа. Модуль комплексного числа. Операция вычитания и деления.

С.Р. №25.

Выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в натуральную степень, извлечение корня степени n, выбирая подходящую форму записи комплексных чисел.

 159-160

Геометрическая интерпретация комплексного числа

161

Тригонометрическая форма комплексного числа

Переходить от алгебраической записи комплексного числа к тригонометрической и к показательной, от тригонометрической и показательной формы к алгебраической. Применять различные формы записи комплексных чисел: алгебраическую, тригонометрическую показательную.

 162-163

Умножение и деление комплексных чисел, записанных в тригонометрической форме. Формула Муавра

Интерпретировать на комплексной плоскости арифметические действия с комплексными числами.

164

Квадратное уравнение с комплексным неизвестным

165

Извлечение корня из комплексного числа. Алгебраические уравнения

Формулировать основную теорему алгебры. Выводить простейшие следствия из основной теоремы алгебры. Находить многочлен наименьшей степени, имеющий заданные корни. Находить многочлен наименьшей степени с действительными коэффициентами, имеющий заданные корни.

166

Урок обобщения и систематизации знаний

167

Контрольная работа № 10 по теме: «Комплексные числа"

Раздел 13: Обобщающее повторение курса геометрии - 6 ч

168-169

Аксиомы стереометрии и их следствия. Параллельность прямых, прямой и плоскости. Скрещивающиеся прямые. Параллельность плоскостей.

170

Перпендикулярность прямой и плоскости. Теорема о трёх перпендикулярах. Угол между прямой и плоскостью.

171

Многогранники

 172

Цилиндр, конус, шар

173

Объёмы тел.

Раздел 14: Итоговое повторение курса алгебры и начал математического анализа - 31 ч

174

Повторение. Преобразование логарифмических и тригонометрических выражений.

175

Повторение. Алгебраические уравнения. Уравнения с модулем. Иррациональные уравнения.

176

Повторение. Показательные и логарифмические уравнения. Общие методы решения уравнений.

177

Повторение. Простейшие тригонометрические уравнения. Методы решения тригонометрических уравнений.

С.Р. №26.

178.

Повторение. Неравенства. Линейные и квадратные неравенства, неравенства с модулем.

179-180

Тренировочная самостоятельная работа, составленная по КИМ ЕГЭ.

 181

Повторение. Показательные и логарифмические неравенства. Иррациональные неравенства

182

Повторение. Решение систем уравнений. Общие методы решения систем уравнений.

С.Р. №27.

183

Повторение. Решение текстовых задач.

 184

Повторение. Уравнение касательной к графику функции. Использование производной к построению графиков функций.

185

Повторение. Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке.

186

Повторение. Задачи с параметрами.

187-188

Повторение. Производная и интеграл.

С.Р. №28.

 189-192

Пробная экзаменационная работа в форме и по материалам ЕГЭ

 193-194

Повторение. Производная и интеграл

195-204

Тренировочные тематические задания.

С.Р. №22,№23.

5

1

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Математика
Разное по математике для 11 класса «ЕГЭ. Математика. Экономические задачи. Кредиты.»
Математика
Уроки по математике для 6 класса «Делимость произведения»
Математика
Математика
Конспект занятия по математике для «Технологичская карта "Походв кинотеатр"»
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь