Разработка урока по теории вероятности

Конспект занятия
В работе представлен материал по основным понятиям теории вероятности
Наталья Николаевна Бережнова
Содержимое публикации

Тема урока «Основные понятия» в теории вероятности

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Событие и виды событий

Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.

Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.

Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.

Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.

Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.

Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания).

Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:

A — в результате броска монеты выпадет орел;

Ā — в результате броска монеты выпадет решка.

Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.

Классическое определение и формула вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A.

Свойства вероятности:

Вероятность достоверного события равна единице.

Вероятность невозможного события равна нулю.

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.

Образец решения задач по теории вероятности

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Как рассуждаем:

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

P = 0/15 = 0

В этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Ответ: 0.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Как рассуждаем:

Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Р=9\39

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь