Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби"

Разное
В работе указаны теоретические основы и средства формирования устных вычислительных навыков обучающихся, приведены описания некоторых дидактических игр, упражнений с десятичными дробями. Представлены фрагменты проводимых уроков с использованием различных видов устных упражнений (например, найти ошибку, заполнить пропуски в таблице, выполнить математический диктант). Систематическое использование устных упражнений приносит положительный результат.
Мащалгина Татьяна Васильевна
Содержимое публикации

Формирование устных вычислительных навыков пятиклассников

при изучении темы «Десятичные дроби».

Введение

Глава 1. Теоретические основы формирования устных вычислительных навыков

1.1. Понятие «вычислительный навык» в психолого – педагогической литературе

1.2. Средства формирования устных вычислительных навыков

Глава 2. Методика формирования устных вычислительных навыков у учащихся 5-го класса при изучении темы «Десятичные дроби»

2.1. Разработка системы упражнений по формированию устных вычислительных навыков

2.2. Опытно-экспериментальная работа

Введение

Одна из важнейших задач обучения школьников математике – формирование вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений.

Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии нельзя решать, не обладая элементарными способами вычислений.

Вычислительная культура формируется у учащихся на всех этапах изучения курса математики, но основа ее закладывается в первые 5-6 лет обучения. В этот период школьники обучаются именно умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень). В последующие годы полученные умения и навыки совершенствуются и закрепляются в процессе изучения алгебры, физики, химии, черчении и других предметов.

У детей с прочными вычислительными навыками меньше проблем с математикой. Но чтобы ребенок быстро считал, выполнял простейшие преобразования, необходимо время для их отработки. 5-7 минут устного счета на уроке недостаточны не только для развития навыков, но и для их закрепления, если нет системы устного счета. Устные упражнения должны применяться также во всех подходящих случаях не только на небольших числах, но также и на больших, но удобных для устного счёта.

Цель данной работы: выявление значения устных упражнений как одного из наиболее эффективных средств формирования устных вычислительных навыков обучающихся 5-го класса.

Задачи:

- изучить психолого-педагогические, теоретические и методические источники по данному вопросу;

-разработать систему устных упражнений, способствующих формированию вычислительных навыков.

Глава 1. Теоретические основы формирования устных вычислительных навыков

1. 1. Понятие «вычислительный навык» в психолого-педагогической литературе

Навык – это действие, сформированное путем повторения, характерное высокой степенью освоения.

Вычислительный навык – это высокая степень овладения вычислительными приемами.

Приобрести вычислительные навыки – значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро.

Вычислительные навыки входят в структуру учебно-познавательной деятельности и существуют в учебных действиях, которые выполняются посредством определенной системы операций. В зависимости от степени овладения учеником учебными действиями, оно выступает как умение или навык, характеризующийся такими качествами, как правильность, осознанность, рациональность, обобщенность, автоматизм и прочность.

Правильностьученик правильно находит результат арифметического действия над данными числами, т. е. правильно выбирает и выполняет операции, составляющие прием.

Осознанностьученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для ученика своего рода доказательство правильности выбора системы операции. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решал пример и почему можно так решать.

Рациональностьученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т. е. выбирает те из возможных операции, выполнение которых легче других и быстрее приводит к результату арифметического действия. Это качество навыка может проявляться тогда, когда для данного случая существуют различные приемы нахождения результата, и ученик, используя различные знания, может сконструировать несколько приемов и выбрать более рациональный.

Обобщенность ученик может применить прием вычисления к большему числу случаев, т. е. он способен перенести прием вычисления на новые случаи.

Автоматизм (свернутость) – ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операции. Осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операции осознанность сохраняется, но обоснование выбора системы операции происходит свернуто в плане внутренней речи. Благодаря этому ученик может в любой момент дать развернутое обоснование выбора системы операции.

Прочностьученик сохраняет сформированные вычислительные навыки на длительное время.

Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением курса математики и использованием соответствующих методических приемов.

Выполнение вычислительного приёма – мыслительный процесс, следовательно, овладение вычислительным приёмом и умение осуществлять контроль за его выполнением, должно происходить одновременно в процессе обучения.

Формирование у школьников вычислительных навыков остаётся одной из главных задач обучения математике.

Психология много внимания уделяет проблеме механизмов формирования навыков, имеющей большое практическое значение. Доказано, что механическое заучивание гораздо менее эффективно, чем заучивание при участии сознания. Полезен практический принцип «повторение без повторения», когда при отработке навыка не затверживается одно и то же действие, но постоянно варьируется в поисках оптимальной формулы движения. При этом осознанию принадлежит очень важная роль.

Формирование вычислительных умений и навыков – это сложный длительный процесс, его эффективность зависит от индивидуальных особенностей ребенка, уровня его подготовки и организации вычислительной деятельности.

На современном этапе развития образования необходимо выбирать такие способы организации вычислительной деятельности школьников, которые способствуют не только формированию прочных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.

Устные вычисления развивают логическое мышление обучающихся, творческие начала и волевые качества, наблюдательность и математическую зоркость, способствуют развитию речи учащихся, если с самого начала обучения вводить в тексты заданий и использовать при обсуждении упражнений математические термины.

Таким образом, на уроке математики формирование устных вычислительных навыков занимает большое место. Овладение навыками устных вычислений имеет большое образовательное, воспитательное и практическое значение:

- образовательное значение: устные вычисления помогают усвоить многие вопросы теории арифметических действий, а также лучше понять письменные приемы;

- воспитательное значение: устные вычисления способствуют развитию мышления, памяти, внимания, речи, математической зоркости, наблюдательности и сообразительности;

- практическое значение: быстрота и правильность вычислений необходимы в жизни, особенно когда письменно выполнить действия не представляется возможным (например, при технических расчетах у станка, в поле, при покупке и продаже).

1. 2. Средства формирования устных вычислительных навыков

Важнейшими вычислительными умениями и навыками являются:

- умение выполнять все арифметические действия с натуральными (многозначными) числами;

- выполнять основные действия с десятичными числами;

- применять законы сложения и умножения к упрощению выражений;

- использовать признаки делимости на 10, 2, 5, 3 и 9;

округлять числа до любого разряда;

- определять порядок действий при вычислении значения выражения

На уроках математики используются следующие приёмы, направленные на преодоление причин возникновения ошибок: 1) игры, игровые моменты и занимательные задачи; 2) тесты «Проверь себя сам»; 3) математические диктанты; 4) исследовательские работы; 5) творческие задания и конкурсы.

Часть приёмов может применяться при работе со всем классом, часть, направленная на развитие внимания, памяти и мышления, может подбираться для группы учеников по результатам тестирования.

Применение игр в первую очередь предназначено для того, чтобы заинтересовать наиболее пассивную часть класса, редко принимающую участие в работе на уроке при традиционном его проведении. Поэтому на начальном этапе, при введении в практику урока дидактических игр, представляется целесообразным применять игры, не требующие глубокого знания и даже понимания текущего материала. В этом случае назначение дидактических игр – в развитии познавательного интереса, способствующего накоплению знаний, умений, навыков, в придании уроку более неформального характера, в привлечении внимания обучающихся к работе.

Постепенно назначение дидактических игр изменяется. Они начинают применяться для проверки полученных знаний посредством решения нестандартных задач в привлекательной, интересной форме. При этом во время игры в группе главным действующим лицом на уроке становятся сами дети, а не учитель.

Несколько видов игр, направленных на развитие тех или иных способностей учащихся.

Игра «Запомни числа».Цель игры: развитие внимания, памяти обучающихся и коммунальных способностей.

Условия игры. Учитель называет какое-либо число. Первый ученик повторяет это число и называет свое. Каждый следующий повторяет ранее названные числа и называет свое. Интерес игры в ее соревновательном характере: кто сможет запомнить больше чисел. Игра продолжается до первой ошибки.

Эту игру можно использовать в самом начале урока, так как она помогает ученикам настроится на рабочий лад, создать хорошее настроение.

Игра «Пропусти число».Цель игры: развитие внимания обучающихся и оценка знаний, полученных на предыдущих уроках.

Условия игры. Учитель предлагает обучающимся по очереди называть вслух в порядке возрастания числа, начиная с 0,1, причем числа, содержащие 3 или кратные 3, следует пропускать. Ученик, назвавший запрещенное число, выбывает. Побеждает тот, кто остается последним.

В данной игре условия можно менять, в зависимости от изучаемой темы, например, при счете пропускать простые числа или числа, кратные 5,10 и т. д. Эту игру хорошо использовать в начале урока вместо опроса.

Игра «Исправляем ошибки».Цель игры: развитие критичности мышления, самоконтроля, внимания, умения обосновывать свою точку зрения.

Условия игры. Все обучающиеся класса делятся на несколько команд и жюри, в которое входит учитель и несколько учеников. Каждой команде выдают одни и те же задания с математическими выражениями и определениями, в которых допущены ошибки, с таким расчетом, чтобы число заданий было равно числу участников каждой из команд. Важно, чтобы при подготовке данной игры использовать картотеку типичных ошибок. Командам дается некоторое время для нахождения ошибки и подготовки к ответу. Та команда, которая первой успела подготовиться, дает свою версию ошибки. Если ее ответ был неверным, с точки зрения других команд или жюри, то другим командам дается возможность доказать свою точку зрения. За верный ответ команде присваивается балл (или несколько баллов в зависимости от сложности задания). Побеждает та команда, которая наберет больше баллов. Данную игру можно использовать при проведении повторительно-обобщающих уроков.

Примерные задания для такой игры по теме «Десятичные дроби».

«Сегодня героем нашей игры будет Незнайка. Он будет сравнивать числа, решать примеры, уравнения и задачи. Не все у Незнайки будет получаться. Вам придется ему помочь».

1. Незнайка сравнил числа. Внимательно посмотрите, все ли он сделал правильно. Найдите ошибки и объясните их.

0,5>0,724; 0,0013<0,00127; 55,7<55,700;

7,6421>7,6429; 0,908<0,918; 8,605=8,6005.

2. Незнайка решил несколько примеров на сложение и вычитание десятичных дробей. Найдите ошибки и объясните их.

2,7+3,651+6,351; 0,325+11,76=15,01; 0,17+1+0,18;

2-0,63=1,63; 117,7-10,07=107,77; 0,632-0,124=0,508.

3. Незнайка решил уравнение х+3,75=6,9 тремя способами, но ответы не совпали. Почему? Найдите ошибки и объясните их.

Способ I. х=6,9-3,75, х=3,25.

Способ II. х=6,9+3,75, х=4,44.

Способ III. х=6,9-3,75, х=3,15.

4. Перед вами примеры на умножение десятичных дробей. Найдите ошибки.

0,0027·1000=0,27; 4,5·55=247,5; 0,24·1,2=2,88.

5. Проверьте примеры на деление десятичных дробей. Найдите ошибки и объясните их.

1,7:100=0,17; 0,035:7=0,005; 0,521:0,008=651,25.

6. Незнайке задали следующее задание: найти такое значение х, при котором равенство 9:10=9·х было бы верно. Не долго думая, он записал следующий ответ: х=0,01. Прав ли Незнайка? Если нет, то докажите свою точку зрения.

7. Незнайку попросили, не умножая определить, сколько получится цифр в произведении 0,54·21,4·11,8 справа от запятой. Ответ Незнайки – 3 цифры. Прав ли он?

Но не всегда использование игры полностью целесообразно. Обычно используются игровые моменты или занимательные задачи, которые имеют непривычную форму или необычны в организации выполнения задания. Игровые моменты несут те же функции, что и игры, но требуют меньше времени на подготовку и проведение. Они являются элементами игры, не требующими обучению правилам.

Несколько вариантов игровых моментов и занимательных задач.

Игровой момент №1.На столе лежат карточки, на которых написаны следующие числа:

0,25; ; 0,75; ; 1,2; ; 0,5; ; 0,0011; ;

0,975; ; 1,05; ; 0,8; 0,6; ; 2,5; 1,02.

Учитель вызывает к доске первого ученика и просит его за некоторое время отобрать карточки, на которых написаны десятичные дроби. Второй ученик раскладывает отобранные карточки в порядке возрастания. Третий ученик отбирает из оставшихся карточек те, на которых написаны дроби, которые можно перевести в десятичные дроби. Четвертый участник находит равные им десятичные дроби.

Игровой момент №2. Учитель просит первого ученика назвать любое число в виде десятичной дроби. Второго ученика учитель просит назвать число, меньше того числа, которое заключено между первыми двумя (такое число, которое больше второго, но меньше первого). Задание повторяется несколько раз.

Игровой момент №3. Даны числа: 0,25; 0,75; 0,5; 0,1; 0,05; 0,2; 0,15; 0,6; 0,4. Используя каждое число только один раз, надо составить три верных равенства.

Игровой момент №4. На доске закреплены следующие карточки:

1,7

2,8

1,9

3,7

4,8

3,9

2,5

2,1

3,3

4,3

2,3

1,1

Учитель вызывает ученика и просит его в течение одной минуты назвать числа в порядке убывания. Следующий ученик должен за одну минуту называть числа в порядке возрастания.

Еще одна форма работы, которая очень нравится ученикам, - это тесты «Проверь себя сам». Цель использования данных тестов: развитие критичности мышления, самоконтроля, внимания. При составлении тестов используется картотека типичных ошибок. Приводим пример теста по теме «Действия с десятичными дробями» (сложение и вычитание).

1. Выполните сложение: 0,17+1

а. 1,17 б. 0,18 в. 0,27

2. Укажите, в каком случае сложение десятичных дробей выполнено правильно: 0,325+11,76

а.б. в.

3. Выполните вычитание: 2-0,63

а. 0,61 б. 1,37 в. 1,63

4. Найдите неизвестное число, для которого верно равенство х+3,75=6,9

а. 3,15 б. 10,65 в. 3,25

5.Найдите неизвестное число, для которого верно равенство17,96-у=5,34

а. 12,62 б. 35,44 в. 23,30

6. Найдите неизвестное число, для которого верно равенство 0,1+0,01+х+0,001=1

а. 0,999 б. 0,899 в. 0,889

7. Вычислите: 11,08+0,62-10,09+0,71

а. 2,32 б. 0,9 в. 1,32

8. Собственная скорость лодки равна 3,65 км/ч. Найдите скорость лодки против течения, если скорость течения реки равна 0,8 км/ч.

а. 4,45 км/ч б. 2,85 км/ч в. 3,57 км/ч

9. Скорость катера против течения равна 36,75 км/ч. Найдите скорость лодки по течению, если скорость течения реки равна 5,6 км/ч.

а. 42,35 км/ч б. 47,95 км/ч в. 31,15 км/ч

10. В первый день бригада собрала 4,5 тонн картофеля, во второй день на 0,8 тонн меньше, а в третий день на 2,25 тонн больше, чем во второй. Сколько тонн картофеля собрала бригада за три дня?

а. 14,15 т. б. 9,65 т. в. 10,45 т.

Ответы: 1-а. 2-в. 3-б. 4-а. 5-а. 6-в. 7-а. 8-б. 9-б. 10-а.

Следующим приемом являетсяматематический диктант – одна из форм контроля знаний. Первая цель при использовании данного вида работы – проверка уровня готовности обучающихся к дальнейшей работе. Каждый учитель знает, как трудно дети воспринимают язык математики на слух. У обучающихся 5 – 6 классов основным является наглядно-образное мышление. Слышать и слушать ребят нужно учить. Следовательно, вторая цель: научить детей слышать и понимать язык математики. Надо отметить, что такую работу нужно проводить систематически.

Составление математического диктанта:

составляется текст диктанта (с ответами на все задания), дается обоснование содержания;

указывается, на какое время рассчитан диктант;

описывается методика проведения (слуховой, зрительно-слуховой, зрительный, использование карточек, кодопозитивов, запись на магнитофон, использование переносных досок, индивидуальных досок и т. д.);

дается пример выполнения работы учеником.

Математический диктант по теме «Десятичная запись дробных чисел».

1. Запишите в виде десятичной дроби:

; ; ; ; .

2. Запишите в виде обыкновенной дроби или смешанного числа: 3,5; 18,04; 0,57; 0,005.

3. Запишите десятичную дробь 1,032. Сколько единиц в разряде сотых этой дроби?

4. Запишите десятичную дробь 135,19. Сколько единиц в разряде единиц этой дроби?

Исследовательские работы. Если проанализировать работу детей на уроках, то становится заметной общая тенденция: ученики почти не задают вопросов. Почему? В первую очередь потому, что им просто не интересно. Становится очевидным, что процесс обучения нужно сделать интересным для учеников. Нужно искусственно создать такую ситуацию, при которой ученики вовлекаются в процесс самостоятельного поиска и открытий новых знаний, даже если для этого придется использовать дополнительную литературу. Естественно, что на первом этапе эта работа направляется и контролируется учителем. Только такое обучение ведет к развитию творческих способностей детей и его можно назвать развивающим обучением.

Целью исследовательских работ является освоение системы и пути получения знаний посредством формирования познавательной деятельности ученика и развития его творческих способностей.

При выполнении исследовательских работ дети учатся ставить вопросы и находить на них ответы, сотрудничать с другими учениками, выходить из нестандартных ситуаций.

Творческие задания и конкурсы – это написание сказок, задач, сценариев КВН и т. д. Цель этих задании заключается в формировании интереса к математике, развитии творческого мышления.

Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать.Для этого устраиваются специальные уроки, на которых решаются задачи и разгадываются кроссворды, созданные учениками, организуются конкурсы работ. Дети высказывают свои впечатления, пишут рецензии.

Еще одним средством формирования устных вычислительных навыков являютсяупражнения. Устные упражнения являются одной из важнейших составляющих развивающего обучения. Именно во время устной работы пятиклассник эффективно учится устанавливать связи между объектами, явлениями, сравнивать, обобщать их, развивает память, наряду с этим развивает и гибкость мышления, учится контролировать свои рассуждения.

Основные виды устных упражнений.

Нахождение значений математических выражений. Предлагается в той или иной форме математическое выражение, требуется найти его значение. Эти упражнения имеют много вариантов.

Можно предлагать числовые математические выражения и буквенные (выражение с переменной), при этом буквам придают числовые значения и находят числовое значение полученного выражения. Например:

1) Найдите разность чисел 8,5-7,2.

2) Найдите значение выражения а+в, если а=0,06, в=0,92.

Выражения могут предлагаться в разной словесной форме: из 8,5 вычесть 7,2; 8,5 минус 7,2; уменьшаемое 8,5, вычитаемое 7,2, найти разность; найти разность чисел 8,5 и 7,2; уменьшить 8,5 на 7,2 и т. д. Эти формулировки использует не только учитель, но и ученики.

Сравнение десятичных дробей. Эти упражнения имеют ряд вариантов. Могут быть даны два выражения, а надо установить, равны ли их значения, а если не равны, то какое из них больше или меньше. Например, предлагается сравнить выражения и вместо звездочки поставить знак «>», «>» или «=»:

2,7+0,9 * 0,9+2,7 55,7+7,6 * 55,7+0,3

0,5·10 * 0,7·15 2,4·9+2,4 * 2,4·10

При этом выбор знака отношения может быть выполнен либо на основе нахождения значений данных выражений и их сравнения (0,5·10<0,7·15, т. к. 5<10,5), либо на основе применения соответствующих знаний: переместительного свойства сложения 2,7+0,9 * 0,9+2,7, изменения результатов действий в зависимости от изменения одного из компонентов 55,7+7,6 * 55,7+0,3 и др.

Можно предлагать упражнения на сравнение выражений с переменной: например, а -1,7 … а -1,2.

Главная роль таких упражнений – способствовать усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, неравенствах и др.

Решение уравнений. Уравнения можно предлагать в разных формах:

1) Из какого числа надо вычесть 10,4, чтобы получить 4,7?

2) Найдите неизвестное число: 7,3-х=7,3-1,8.

3) Я задумала число, умножила его на 1,2 и получила 3,6. Какое число я задумала?

Назначение таких упражнений – выработать умение решать уравнения, помочь усвоить связи между компонентами и результатами арифметических действий.

Решение задач. Предлагаются задачи как простые, так и составные.

1) Периметр квадрата 9,6 м2 . Найдите его сторону.

2) Во сколько раз 4,8 больше 1,2?

3) Какое число меньше 3,3 в 3 раза?

4) Периметр квадрата 0,64 м2. Определите, какова длина его стороны.

Цель данных упражнений выработка умений решать задачи, усвоение теоретических знаний, выработка вычислительных навыков.

Глава 2. Методика формирования вычислительных навыков у обучающихся 5-го класса при изучении темы «Десятичные дроби»

2. 1. Разработка системы упражнений по формированию устных вычислительных навыков

Формирование вычислительных навыков - одна из главных задач, которая должна быть решена в ходе обучения детей в школе.

Разнообразные задания позволяют развивать математическую речь ученика, гибкость мышления, возможность находить свой способ решения. Они дают возможность каждому ребенку проявить активность в поисковой работе, активизируют мыслительную деятельность, умение находить какие-то особенности в решении различных видов примеров. Особое внимание уделяется различным формам работы – это фронтальные, групповые задания, работа в парах.

Основные вопросы по теме “Десятичные дроби”, изучаемые в 5-ом классе:

Десятичная запись дробных чисел;

Сравнение десятичных дробей;

Сложение десятичных дробей;

Вычитание десятичных дробей;

Приближенные значения чисел. Округление десятичных дробей;

Умножение десятичных дробей на натуральные числа;

Деление десятичных дробей на натуральные числа;

Умножение десятичных дробей;

Деление десятичных дробей.

Основная цель устных упражнений – научить всех учеников производить в уме арифметические действия в пределах сложности примеров на сложение, вычитание, умножение и деление десятичных дробей. Задача учителя при этом – наряду с усвоением новых понятий и разделов математики сохранить трепетное отношение к числу, учить рациональным приемам счета, иногда дополняя материал учебника рассмотрение свойств действий (вычитание числа из суммы, вычитание суммы из числа, делимость произведения на число, делимость числа на произведение и т. д.).

Фрагменты проводимых уроков с использованием различных видов устных упражнений.

Тема: Десятичная запись дробных чисел

Цели: научить читать и записывать десятичные дроби, переводить обыкновенную дробь со знаменателем 10, 100, 1000 и т. д. в десятичную дробь и наоборот; развивать вычислительные навыки, память, математическую речь, воспитывать интерес к математике и географии.

Оборудование: «вычислительные машины» у каждого ученика (в виде прямоугольного листочка бумаги с 4 кружочками), картинка или иллюстрация с изображениями планет.

I. Организационной момент

Сегодня мы отправимся в заочное путешествие в другую планету.

II. Устные упражнения

- Ребята, какие планеты вы знаете? Вообще существуют 9 планет: Земля, Марс, Юпитер, Венера, Сатурн, Нептун, Уран, Плутон, Меркурий. Мы с вами живем на планете Земля, но сегодня на уроке некоторые из вас отправятся на планету Юпитер (показываю эту планету на иллюстрации).Что же нужно сделать, чтобы попасть на эту планету?

Во-первых, у вас на партах у каждого лежит вычислительная машина. В эту машину вы после каждого задания устного счета будете записывать число. В конце у каждого на вычислительной машине появится код. С помощью этого кода мы проверим, кто отправился в путешествие, а кто остался в классе.

1. Найдите в каком номере пропущена ошибка, номер примера поставьте в первом кружочке вычислительной машины.

1) 15:5·13=39; 2) 17·5-11=64; 3) 33+27:3=20

2. Найдите верное утверждение и поставьте его номер во второй кружок вычислительной машины: Чтобы найти уменьшаемое, надо:

1) к разности прибавить вычитаемое;

2)из вычитаемого вычесть разность. 3. Назовите целую и дробную часть чисел: 1; 2; 7; 1; . Запишите в третьем кружке машины натуральное число в ряде данных чисел.

4. Решите задачу, ответ запишите в последний кружок машины: Если 16 человек купили мороженное по цене 6 руб., то стоимость их покупки составил ... рублей.

- Теперь проверим, какой код получился у вас, и узнаем, кто может спокойно лететь на Юпитер, а кому еще нужно внимательно слушать учителя и больше заниматься математикой.

III. Объяснение нового материала

IV. Первичное закрепление материала

Итог урока: игра «Математическая эстафета»

Ученики, сидящие за первыми партами, жюри. Ученики с последних парт выходят к доске, выполняют задание и передают мел следующему. Задание: записать в виде десятичной дроби числа:

I вариант

II вариант

1=

20=

2=

11=

=

5=

=

7=

=

=

=

=

9=

=

1=

=

Тема: Сравнение десятичных дробей

Цели урока: - научить определять, находить равные дроби, сравнивать десятичные дроби; развивать математическую речь, навыки устных вычислений, учить детей правильной самооценке.

I. Организационный момент

II Устные упражнения

1. Игровой момент «Где живет белка?»

- Ребята, сегодня на урок к нам пришла гостья. А кто эта гостья, вы узнаете, если отгадаете мою загадку.

Пышный хвост торчит с верхушки.

Что за странная зверюшка?

- Правильно, ребята, это белочка. А где может жить белочка? (В норе, дупле или гнезде.) Решив эту цепочку, мы узнаем, где она живет. Если белочка живет в норе, то у вас получится число 8, если в дупле – то 5, а если в гнезде – то 6. (Учитель записывает на доске: в норе- 8; в дупле-5; в гнезде-6)

Итак, давайте вместе решим эту цепочку:


Получилось число 5. Где живет белочка? (В дупле)

2. Математический диктант «Торопись, да не ошибись» (включается аудиозапись, ученики выполняют диктант на листочках) Задание: запишите десятичные дроби: 2,8; 3,74; 1,371; 0,55; 145,003; 20,036; 201,0101; 6,006; 33,0008; 7,0034; 765,0945; 5674,76027.

III. Сообщение темы и целей урока

IV. Работа по теме урока

V. Итог урока: Выясните, в каком столбике верно записано число. Напишите в кружке букву, ему соответствующую.

1) пять целых две десятых

5,02

Т

5,2

Р

5,002

П

2) нуль целых восемь тысячных

0,008

О

0,08

Е

0,8

У

3) три целых двадцать пять тысячных

3,25

Д

30,25

В

3,025

Т

4) шестнадцать целых пять сотых

16,005

А

16,5

Е

16,05

О

5) восемнадцать целых восемь сотых

18,8

Ш

18,08

К

18,008

В

6) пять целых пятнадцать десятитысячных

5,0015

А

5,015

У

5,15

И

7) тридцать четыре целых сто пять тысячных

34,0105

В

34,105

С

34,15

М

Полученное слово - «РОТОКАС» означает название самого короткого в мире алфавита. В нем насчитывается 11 букв, и он используется жителями Папуа Новой Гвинеи.

А сколько букв содержит русский алфавит? (33)

Тема: Сложение и вычитание десятичных дробей

Цели урока: повторить изученный материал, закрепить навык сложения и вычитания десятичных дробей; развивать навыки устных вычислений, логическое мышление; воспитывать аккуратность, внимание.

Оборудование: конверт, карточки с числовыми выражениями, нарисованные Чебурашка и Шапокляк, набор магнитов.

I. Организационный момент

II Устные упражнения

1) Прочитайте дроби: 6,23; 98,704; 7,024; 8,003; 10,0208; 4,0004; 24,2009.

2) Сравните дроби: 6,37 и 6,299; 10,01 и 10,099; 9,18 и 9,1798;

7,01 и 7,018; 9,004 и 9,04; 28,028 и 28,0209.

3) Игровой момент

- Ребята, Чебурашка и Шапокляк прислали нам несколько выражений. Но в конверте все выражения перепутались и теперь мы не знаем, где решения Чебурашки, а где «ловушки» Шапокляк. Поэтому мы не можем быть уверены, что все решения верны, так как Шапокляк любит делать мелкие пакости. Наша задача обсудить выражения и их значения и обнаружить ошибки, если таковые имеются.

Содержание: 21,6+4,7=25,3; 6,7-3,9=2,8; 8,2+1,91=9,11; 5,84-2,7=3,16; 8-3,8=5,2;

- Работаем в парах. Вам необходимо просмотреть все действия, обнаружить ошибки, объяснить их своему соседу и, доказательно рассуждая исправить их. Итак, сколько вычислений прислал Чебурашка? (Одно). Вы смогли обнаружить и устранить «ловушки» Шапокляк? Молодцы! Это поможет нам не допускать ошибки и быть более внимательными.

Тема: Умножение десятичных дробей на натуральные числа

Цели урока: закрепить навык умножения десятичной дроби на натуральное число, в том числе и на 10, 100, 1000 и т. д.; развивать математическую речь, навыки устных вычислении, внимание, память; воспитывать интерес к математике.

Оборудование: нарисованный медведь, дерево, телефон, жетоны, магниты, карточки

I. Организационный момент

Тот из вас мне всех милее, кто считает всех быстрее.

II. Устные упражнения

1. Игровой момент

- Ребята, посмотрите, у нас гость! Это – Михаил Потапович. Он пытается дозвониться лесным жителям: Айболиту, Бабе-Яге, Белоснежке и гномам, Царевне-лягушке. Но все номера телефонов смыл вчерашний дождь, и теперь ему никак не дозвониться ни к одному лесному жителю. Но скажу вам по секрету: если мы очень постараемся и выполним все задания устного счета, то поможем узнать Михаилу Потаповичу все номера лесных жителей. Итак, за дело.

1. Вычисли:

53,25+5,75; 25,005-2,005; 34,1005-13,1005.

Постепенно на доске появляется номер телефона Айболита:

2.Округлите данные числа до единиц: 13,547; 87,0125; 60,411.

На доске появляется номер телефона Бабы-Яги:

3. Заполните таблицу:

I слагаемое

7,8

8,65

II слагаемое

6,43

1,35

Сумма

9,8

11,43

Учитель записывает на доске номер телефона Белоснежки и гномов.

4. Выполните действие

1,2∙10; 0,06∙1000; 0.99∙100.

На доске появляется номер телефона Царевны-лягушки:

2. «Найди ошибку»:

0,01·3=0,3; 0,05·2=0,01;

0,08·4=32; 0,006·3=0,18;

0,007·3=2,1; 0,01·48=0,48. ( В шестом примере ошибки нет!)

Затем учитель стирает правильные знаки и ответы, а ученики сами в течение 5-6 мин. записывают примеры в тетрадь, восстанавливая знаки и результаты.

Учителю постоянно приходится изыскивать разнообразные способы для поддержания работоспособности учащихся. Осознание ими того, что после устного выполнения данных заданий последует письменная работа, не позволяет им отвлекаться на этапе устной работы.

Таким образом, устный счёт развивает логическое мышление, личностные качества ребенка, повышает у детей познавательный интерес к урокам математики. Вызывая интерес и прививая любовь к математике с помощью различных видов устных упражнений, учитель будет помогать ученикам активно взаимодействовать с учебным материалом. А это важнейшее условие сознательного усвоения материала.

2.2. Опытно-экпериментальная работа и анализ ее результатов

Формирование вычислительных навыков – одна из главных задач работы учителя. Добиться успеха в формировании вычислительных навыков можно только в том случае, если четко соблюдать некоторые требования к проведению устных упражнений:

четкое объяснение учителем цели задания;

наличие наглядности, художественного слова, дополнительного материала;

учёт времени;

подведение итогов устных упражнений или оценивание детей за хорошие успехи.

Для эксперимента была выбрана тема «Десятичные дроби», которая рассчитана на 40 часов.

Учащимся была предложена следующая анкета:

1) Любишь ли ты устный счет?

2) Какие задания ты любишь выполнять на уроках математики? (решать выражения, задачи, устные упражнения, ...)

3) Ты быстрее решаешь устно или письменно?

Получились следующие результаты: 65% детей любят устный счет, больше всего им нравится находить значения выражений, упражнения в виде игры. Но 54% детей данного класса предпочитают решать письменно, чем устно.

В связи с этим в классе была проведена беседа по теме «Устный счет – гимнастика ума», в ходе которой выяснялась роль устных вычислений, ее важность в изучении математики.

Учащимся был предложен математический диктант по теме «Обыкновенные дроби».

Математический диктант по теме «Обыкновенные дроби»

1.2/11 и 5/11. Какая из двух дробей больше?

2. Запишите сумму дробей 2/11 и 3/11.

3. Результат уменьшите на 1/11

4. Чему равна разность чисел 1 и 3/8.

5. Запишите сумму получившейся дроби и дроби 7/8.

6. Запишите число 4 в виде дроби со знаменателем 5.

7. Задача: Из помидоров массой 3/16 кг и огурцов массой 5/16 кг сделали салат. Какова масса салата?

8. Запишите неправильную дробь 7/6 в виде смешанного числа.

9. Найдите сумму чисел 1 ¾ и 2 ¼.

10. Запишите число 5 ¾ в виде неправильной дроби.

Оценка результатов работы производилась следующим способом:

10 баллов - очень высокий уровень; 8-9 баллов - высокий уровень;

5-7 баллов - средний уровень; 1-4 баллов - низкий уровень.

Контрольный срез знаний проводился в форме математического диктанта по теме «Десятичные дроби». На его выполнение отводилось 10-12 мин.

Математический диктант по теме «Десятичные дроби»

1.Запишите в виде десятичной дроби число 2,0101.

2.Что больше: 30,07 или 30,11?

3.Запишите результат суммы чисел 2 и 1,5.

4.Результат уменьшите на 1,2.

5.Округлите число 26,71 до десятых.

6.Запишите число, расположенное на координатном луче между числами 0,1 и 0,2.

7. Найдите периметр квадрата, если его сторона равна 3,5 см.

8. Запишите результат разности чисел 3 и 0,4.

9. Чему равно произведение чисел 2,87 и 10.

10. Во сколько раз число 8,4 больше 2?

Данная работа по формированию устных вычислительных навыков доказала свою эффективность. Как показала практика, используя различные устные упражнения, дети лучше усваивают тему урока, быстрее считают (причем устно), активнее идут на контакт с учителем, воспринимают материал более осмысленно, занимаются с увлечением. С помощью устных упражнений учителю легче осуществлять индивидуальный подход к ребенку, обеспечивать нужное количество повторений на разнообразном материале. Особенно в игровой обстановке ребенок не боится отвечать на вопрос, даже если не знает правильного ответа.

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь