"Алгебра. 10 класс. Свойства функции"

Уроки
Материал представляет собой конспект урока алгебры в 10 класс . Тема "Свойства функции. Четность функции".
ГУСЕВА ЕЛЕНА ИВАНОВНА
Содержимое публикации

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГИМНАЗИЯ № 6 Г. ДОНЕЦКА»

Учитель математики Гусева Елена Ивановна

Конспект урока . Алгебра, 10 класс

Тема урока: «Свойства функции. Четность функции»

Цель урока:

Закрепить понятие четной, нечетной функции,

свойства четной(нечетной) функции, построение

графика функции с учетом ее четности,

повторить понятие монотонности функции,

развивать логическое мышление, тренировать

внимание и память учащихся, формировать

общеучебные умения и навыки

Урок обобщения и систематизации знаний учащихся

Ход урока

1. Организационный момент . Постановка цели урока

2. Актуализация опорных знаний. Понятие функции, четной (нечетной)

функции , монотонность функции.

1/ По какому принципу записаны функции в каждой строке?

у=4х3-3х2 у= у=4/(х +1) у=(3х-2)2

у=4х2-5х4 у=6/(х2-4) у=(2х+х3)2

у=х5 у=-1/х-х5 у=(х+х3)5

( В первой строке записаны функции, не являющиеся ни четными, ни нечетными, во второй строке- четные функции, в третьей строке- нечетные функции)

??? Каким образом определяется четность, нечетность функции? Что является необходимым условием четности( нечетности ) функции? Для каких функций, записанных в первой строке, это условие не выполняется?

2/ Игра «Сделай вывод»

а/ у= ах+в- нечетная функция, значит ......

б/ у= ах2+вх+с- четная, значит ее график.........

в/ у= ах2+вх+с возрастает на промежутке( - ; 5), убывает на

промежутке ( 5; ), значит ..........

г/ у=(ах4+вх3+сх2+dх)/х- четная , значит а22=....

д/ у= ах2-вх+с , Е(у)=R, в5<0 , значит данная

функция....

е/ у=х2/(х-а) + х4/(х-в) – нечетная, значит......

В то время, пока основная часть класса выполняет предложенное задание, ученик у доски выполняет задание следующего вида:

В записи данных функций вычеркнуть слагаемое, которое «мешает»

четности или нечетности функции:

а/ у=6х2-7х4 + 2/х6 +

б/ у= 2х3-7х+ /х/ -1/х

в/ у=+ х6-234

г/ у=3х5+ах2-3х (ах2 , если а не равно нулю)

3. Решений упражнений .Работа в тетрадях

1/ Исследовать функцию на четность :

а/ у(х)=( х35-1)/(х2+в) , где в- абсцисса вершины параболы

у=х2-10х+1

б/ у(х)=- , где в- наибольшее число,

входящее в область определения функции у(х)=

в/ у(х)=/с-х/:(х-в) + /с+х/:(х+в) , где (с,в)- центр окружности ,

заданной уравнением х2-4х+у2-6у=29

(Необходимо ли было находить в и с?)

г/ у(х)= (х+1)13(3-х)10+(1-х)13(х+3)10

Тренировочные упражнения

Достроить график функции

а/ по четности

б/ по нечетности

в/ по нечетности (!!!)

Почему в третьем случае выполнение задания невозможно?

На чем основано выполнение этого задания?

2/Задание (выполняется в тетрадях) : Построить графики функций,

установить четность функций, указать промежутки монотонности

функции:

а/ у(х)=(х4-1)/(х2-1) ; б/ у(х)=(х3+3х2+3х+1)/(х+1)2

4. Подведение итогов урока

????Какие свойства функции были сегодня рассмотрены на уроке?

Можно ли говорить о промежутках четности( нечетности ) функции?

В качестве итога урока учащимся предлагается привести пример

функции:

а/ линейная нечетная (ее название?)

б/ убывающая, график –гипербола

в/ квадратичная нечетная (возможно?)

г/ четная, график- окружность (окружность не является графиком

функции, окружность – график ....)

д/ четная линейная функция ( как расположен график функции в

системе координат?)

??? Каковы преимущества четной или нечетной функции по отношению

к функции, не обладающей этим свойством ?

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь