Разработка урока математики по теме «Формулы сокращенного умножения» (7 класс)

Уроки
Цель: 1. Образовательная: закрепить знания учащихся о формулах сокращенного умножения, сформировать умения применения формул при решении задач. 2. Развивающая: развить познавательный интерес к математике, логическое мышление, математическую речь, наблюдательность, умение систематизировать и применять полученные знания. 3. Воспитательная: воспитать ответственное, творческое отношение у учебному труду.
Хиневич Татьяна Александровна
Содержимое публикации

Урок математики в 7 классе по теме «Формулы сокращенного умножения»

Цель:

1. Образовательная: закрепить знания учащихся о формулах сокращенного умножения, сформировать умения применения формул при решении задач.

2. Развивающая: развить познавательный интерес к математике, логическое мышление, математическую речь, наблюдательность, умение систематизировать и применять полученные знания.

3. Воспитательная: воспитать ответственное, творческое отношение у учебному труду.

Тип урока: Урок обобщения и систематизация знаний.

Оборудование: мультимедиа, плакаты с формулами, раздаточный материал.

План урока.

Организационный момент, постановка цели урока.

Актуализация знаний.

Проверка домашнего задания.

Практическое применение формул. Быстрый счёт

Из истории математики.

Занимательные задачи.

Работа с учебником.

Самостоятельная работа.

Итоги урока. Рефлексия.

ХОД УРОКА

У математиков существует
свой язык – это формулы”.

С. Ковалевская

Организационный момент, постановка цели урока.

Здравствуйте, ребята! Тема нашего урока “Формулы сокращенного умножения». Сегодня урок закрепления и формирования навыков применения формул сокращенного умножения. Перед нами задача - закрепить изученный материал. Разобраться в непонятных ранее моментах, проконтролировать и оценить свои знания.

Актуализация знаний.

Формулой называется символьная запись, содержащая некоторое утверждение.

а) При записи формул были допущены ошибки . Найдите и исправьте их.

1) (а+в)22+ав+в2

Ответ : (а+в)22+2ав+в2

2) (а-с)22-2ав+в2

Ответ : (а-в)22-2ав+в2

3) (а+в)332в+ав23

Ответ : (а-в)33-3а2в+3ав23

4) (а-в)33-3ав+3ав-в3

Ответ : (а-в)33-3а2в+3ав23

5) а22=(а-в)(а-в)

Ответ : а22=(а-в)(а+в)

б) В таблицах представлены выражения. Выберите правильный ответ.

Ответы:

Задание

1

2

3

(с+3)2=

с2- 6с + 9

с2+ 2с + 9

с2+ 6с + 9

(4-2у)2=

16 + 16у + у2

16 - 16у + у2

8 - 8у + у2

(9+5х)2=

25х2+90х+81

25х2+81

25х2-90х- 81

. Проверка домашнего задания.

Некоторые правила сокращенного умножения были известны еще около 4 тысяч лет тому назад. Их знали вавилоняне и другие народы древности. Но в то время они формулировались словесно или геометрически.

Ни у древних Египтян, ни у древних вавилонян в алгебре не было букв. Буквами для обозначения чисел не пользовались и греческие учёные.

Вашим домашним заданием было доказать формулы сокращенного умножения геометрическим способом.

Предоставим слово первой группе.

1)Доказательство формулы (а + b)2 = a2 +2ab +b2

У древних греков величины обозначались не числами или буквами, а отрезками прямых. Они говорили не “а2”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник, заключенный между отрезками a и b”.

Первым с доказательством этой формулы столкнулся древнегреческий учёный Евклид, живущий в Александрии в III веке до н.э., так как в те времена не было букв, он пользовался геометрическим способом доказательства формулы.

S = S1+S2+2*S3

Из данного рисунка видно, что площадь квадрата со стороной (а + b) равна сумме площадей квадрата со стороной а, квадрата со стороной b и двух прямоугольников с длиной а и шириной b.

Если прямая линия (имеется в виду отрезок) разделен на 2 отрезка а и b, то квадрат на всей прямой, т.е. (а + b)2 равен а2 + b2 + 2ab.

Значит, (а + b)2 = a2 +2ab +b2

Предоставим слово второй группе.

2)Докозательство формулы (а + b) (а - b) = a2 -b2

Чтобы доказать формулу сокращённого умножения, другим способом возьмём прямоугольник со сторонами (а + в) и (а – в)

S = S1+S2

Его площадь равна (а + в)·(а – в) .

Этот прямоугольник разрежем на два прямоугольника со сторонами

в и (а – в) и а и (а – в).

S = S1+S2= в*(а – в)+ а*(а – в) =ва-в22-ав=а22

Практическое применение формул.

Быстрый счёт

Задание. С помощью формул разложения разности квадратов на множители, найдите значение выражения.

(10+1) 2 = 121

412-312= 720

242-232= 47

732-632 = 1360

992= 9801

) 68 = 1

182-162

512= 2601

Устанавливаем соответствие и получаем слово ПИФАГОР.

Пифагор

Из истории математики. А сейчас я вам предлагаю познакомиться с задачей Пифагора.

Задача Пифагора: Всякое нечётное число, кроме единицы, есть разность двух квадратов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

1 способ. (n+1)2 - n2=(n+1-n)(n+1+n)=2n+1 - нечётное число

2 способ. (n+1)2 - n2 = n2+2n+1-n2=2n+1 - нечётное число

В школе Пифагора эта задача решалась геометрически. Действительно, если к квадрату со стороной n прибавить гномон, представляющий нечётное число 2n+1 (на рис. выделено цветом), то получится квадрат со стороной n+1,

т.е. n2 +(2n+1)=(n+1)2 или (n+1)2 – n2=2n+1

Занимательные задачи

Задумайте число (до 10);

Умножьте его на себя;

Прибавьте к результату задуманное число;

К полученной сумме прибавьте 1;

К полученному числу прибавьте задуманное число.

Скажите мне число, которое у вас получилось и я отгадаю, какое число вы задумали.

Решение: x² + x + 1 + x = x² + 2x + 1 = (x + 1)²

Например, 5·5 + 5 + 1 + 5 = 36,

x = √36 – 1 = 6 – 1 = 5.

Работа с учебником. Решение задачи № 900.

Самостоятельная работа. (Работа по карточкам).

I вариант                                                 II вариант

1.Преобразуйте в многочлен:

а) (у-4)2 а) (3а+4)2

б) (7х+а)2 б) (2х-в)2

в) (5с-1)(5с+1) в) (с+3)(с-3)

г) (3а+2в)(3а-2в) г) (5у-2х)(5у+2х)

2. Упростите выражение.

(а-9)2- (81+2а) (с+в)(с-в) - (5с22)

3. Разложите на множители.

а) х2-49 а) 25у22

б) с2+4ас+а2 б)25х2-10ху+у2

Итоги урока.

Домашнее задание .

Оценки за урок.

Рефлексия урока: Учитель предлагает ребятам воспользоваться одной из мордашек для оценивания своей включенности в урок.

Используемая литература.

Алгебра. Учебник для 7 класса под редакцией Теляковского. М., “Просвещение”, 2020.

Дидактические материалы. Алгебра 7 класс. Л.И. Званич, Л.В.Кузнецова. М. «Просвещение», 20013.

Открытые уроки алгебры. Н.Л.Барсукова, М. «ВАКО»,

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Математика
Конспект занятия по математике для 9 класса «Подготовка к ОГЭ по математике 9 класс»
Математика
Конспект занятия по математике для дошкольников «Конспект НОД по ФЭМП в средней группе.»
Математика
Конспект занятия по математике для дошкольников «итоговое занятие по ФЭМП в старшей группе»
Комментарии
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь