Пояснительная записка
В разработке собраны олимпиадные задачи из разных источников, ориентированные на учащихся 5-6 классов. Данный материал можно использовать при непосредственной подготовке к урокам и внеурочным занятиям. Автор разработки учитель математики МОУ «СОШ № 4» г. Стрежевой Томской области Гайнетдинова Земфира Султановна.
Задачи, предлагаемые школьникам на математических олимпиадах и конкурсах, формально не требуют знаний, выходящих за рамки школьной программы. Вместе с тем, решение каждой из этих задач, как правило, основывается на уникальной идее, требующей от школьника творческого мышления, развитие которого, безусловно, является общей задачей всего школьного образования. Однако, при всей своей нестандартности, конкурсные задачи основываются на вполне определенной, сформировавшейся за долгое время существования олимпиадного движения, методологии, принципиально отличающейся от методологии решения стандартных школьных задач. Так что, хотя, в принципе, школьник может и сам, основываясь лишь на знаниях, входящих в школьную программу, и, конечно же, смекалке, обнаружить верный путь решения, знание ряда специальных методов и приемов, оказывается на олимпиадах и конкурсах весьма полезным. Именно в ознакомлении с этими методами, большей частью основанном, конечно же, на практическом решении конкурсных задач соответствующей тематики, состоит основная цель подготовки к математическим олимпиадам и конкурсам.
Место учебного курса в учебном плане: данные задачи предназначены для работы с учащимися 5-6 классов, проявляющих интерес и склонность к изучению математики. Задачи можно использовать на уроках математики в качестве дополнительного материала, при организации внеурочной работы, и для индивидуальной работы.
При проведении внеурочных занятий целесообразно сочетать решение задач с соответствующими теоретическими сведениями, которыми учащиеся 5-6 классов могут еще не владеть.
Организация самостоятельной работы учащихся будет способствовать привлечению их внимания к математической и научной литературе, которой в настоящее время имеется достаточно. Самостоятельная работа учащихся обязательно контролируется. Ее результатом могут быть сообщения на занятиях, создание презентаций, рефератов.
Проблема: многие годы традиционной целью школьного образования было овладение системой знаний, составляющих основу наук. Память учеников загружалась многочисленными фактами, именами, понятиями. Именно поэтому выпускники российской школы по уровню фактических знаний, заметно превосходят своих сверстников из большинства стран. Однако результаты проводимых за последние два десятилетия международных сравнительных исследований заставляют насторожиться.
Российские школьники лучше учащихся многих стран выполняют задания репродуктивного характера, отражающие овладение предметными знаниями и умениями. Однако их результаты ниже при выполнении заданий на применение знаний в практических, жизненных ситуациях, содержание которых представлено в необычной, нестандартной форме, в которых требуется провести анализ данных или их интерпретацию, сформулировать вывод или назвать последствия тех или иных изменений. Российские школьники показывают значительно более низкие результаты при выполнении заданий, связанных с пониманием методологических аспектов научного знания, использованием научных методов наблюдения, классификации, сравнения, формулирования гипотез и выводов, планирования эксперимента, интерпретации данных и проведения исследования. Поэтому вопрос о качестве образования был и остаётся самым актуальным.
Основная цель: развитие у учащихся математической интуиции, логического и аналитического мышления, пространственного воображения, их математических и конструктивных способностей, формирование познавательной активности и познавательного интереса к математике.
Задачи:
создать систему целенаправленного выявления и отбора одаренных детей;
стимулировать творческую деятельность одаренных детей;
разработать и поэтапно внедрять новое содержание образование, прогрессивные технологии в работе с одаренными детьми;
создать условия одаренным детям для реализации их личных творческих способностей в процессе научно – исследовательской и поисковой деятельности.
выработать у учащихся навыки работы с математической литературой с соответствующим составлением кратких текстов прочитанной информации.
Актуальность: дифференциация обучения математики, позволяющей с одной стороны - обеспечить базовую математическую подготовку, а с другой стороны - удовлетворить потребности каждого, кто проявляет интерес и способности к предмету. Создание условий для повышения мотивации к обучению математики, стремление развивать интеллектуальные возможности учащихся.
Новизна: мыследеятельность при системно-деятельностном подходе к обучению, направленная на решение логических и олимпиадных задач имеет большие потенциальные возможности для формирования всех видов УУД. Реализация этих возможностей зависит от способов организации учебной деятельности школьников, которые позволяют не только обучать математике, но и воспитывать математикой, не только учить мыслям, но и учить мыслить.
Ожидаемые результаты обучения: рост творческой деятельности учащихся, закрепление основных формул, повышение качества обучения и уровень подготовки к олимпиадам.
Личностные метапредметные и предметные результаты освоения задач в контексте ФГОС второго поколения:
Метапредметные результаты: составлять план и последовательность действий, концентрировать волю для преодоления интеллектуальных затруднений.
Регулятивные результаты: выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели, составлять (индивидуально или в группе) план решения проблемы, работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки.
Познавательные результаты: осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.
Коммуникативные результаты: в дискуссии уметь выдвинуть аргументы и контраргументы, учиться критично, относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его.
Формы контроля: контроль знаний проводится в форме тестирования, контрольные задания, создание проекта, проведение олимпиады.
Содержание дидактического материала
1. Логические задачи. Выполнение предложенных заданий является важным шагом к развитию логического мышления и креативности, как основной характеристики творческих способностей.
2.Математические игры. Сюжеты математических игр разнообразны. Вообще говоря, большинство математических идей можно оформить в виде игры. На олимпиадах встречаются игры как с алгебраическим, так и с геометрическим содержанием. В этот раздел, помимо прочих задач, включены и занимательные задачки (игры - шутки). Эти задачи можно использовать и на первых занятиях для выявления логических и математических способностей учеников, и в дальнейшем в качестве развлекательных «вставок». Игры - шутки позволяют снять напряжение и усталость, дают возможность ученикам отдохнуть.
3.Задачи на проценты. При решении задач на проценты полезно развивать память, логическое мышление, прививать учащимся основы экономической грамотности.
4. Задачи на взвешивания и переливания.Данный раздел посвящен решению одного из классов нестандартных задач – это задачам на взвешивания и переливания. Умение решать такие задачи помогает развивать логическое мышление, сообразительность, наблюдательность, смекалку, что поможет при изучении трудных тем по математике в старших классах.
5. Задачи на разрезания. Задачи на разрезание помогают, как можно раньше формировать геометрические представления у школьников на разнообразном материале. Эти задачи интересны тем, что не существует универсального метода их решения. Поэтому, кто берется их решать, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению.
6.Задачи на делимость чисел. При решении задач на делимость полезно знать некоторые признаки делимости. Для некоторых делителей эти признаки позволяют устанавливать делимость без выполнения самого деления. Так, например, ученикам 5 класса известны признаки делимости на 10, 5 и 2, 3, 9.
7.Принцип Дирихле. В самой простой и несерьезной форме принцип Дирихле выглядит так: “нельзя посадить семерых зайцев в три клетки так, чтобы в каждой клетке находилось не больше двух зайцев “. Другая формулировка “ принципа Дирихле“: если n + 1 предмет поместить в n мест, то обязательно хотя бы в одном месте окажутся хотя бы два предмета. Заметим, что в роли предметов могут выступать и математические объекты - числа, места в таблице, отрезки и т.д.
8. Задачи на инвариант. Олимпиадные задачи на инварианты можно условно разбить на два вида: те, в которых требуется доказать некий инвариант, т.е. он явно определен, и те, в которых инвариант используется при решении и сразу не очевиден. Принцип решения задач основан на поиске характеристики объекта, которая не меняется при выполнении действий, указанных в задаче (инвариант объекта). Стандартным является рассуждение: пусть на некотором шаге получился объект А. Применим к нему указанное действие и получим объект В. Что у них общего? Что изменилось?
9. Прикладные задачи. Практика показывает, что школьники с большим интересом решают и воспринимают задачи практического содержания. Учащиеся с увлечением наблюдают, как из практической задачи возникает теоретическая часть, и как часто теоретической задаче можно придать практическую форму.
10. Типы занятий в зависимости от формы их проведения, которые можно проводить, используя данную методическую разработку
11.Список используемой литературы.
1. Гальперин Г.А. - Московские математические олимпиады, 1986г.
2. Гарднер М. - Математические досуги, 1972г.
3. Гик Е.Я. - Занимательные математические игры, 1987г.
4. Дориченко С.А., Ященко И.В. - XVIII Московская математическая олимпиада, Сборник подготовительных задач, 1994г.
5. Игнатьев Е.В. - В царстве смекалки, 1979г.
6. Кордемский Б., Ахадов А. - Удивительный мир чисел,1990г.
7. Нагибин Ф.Ф. Канин Е.С. Математическая шкатулка.1984.
8. Олехник С.Н. Нестеренко Ю.В. - Старинные занимательные задачи,1988г.
9. Перельман Я. - Занимательные задачи для маленьких, 1994г.
10. Петраков И.И. - Математические олимпиады школьников, 1982г.
11. Русанов В.Н. - Математические олимпиады младших школьников,1990г.
12. Шарыгин И.Ф., Ерганжиева Л. - Наглядная геометрия, 1992г.
13. Шарыгин И.Ф., Шевкин А.В. - Математика. Задачи на смекалку, 1995г.
14. Штейнгауз Г.Г. - Сто задач, 1982г.
15. Математика (газета). 1995 - 2013 гг.
16. Синев В.А. - Олимпиадный курс по математике для 5-6 кл. , 1999г.
17. Екимова М.А., Кукин Г.П. - Задачи на разрезание, 2002г.
18. Открытый банк заданий ЕГЭ.
Дидактический материал
Логические задачи
Задача1. В три банки с надписями "малиновое", "клубничное" и "малиновое или клубничное" налили смородиновое, малиновое и клубничное варенье. Все надписи оказались неправильными. Какое варенье налили в банку "клубничное"?
Решение. Так как все надписи неправильные, то в третьей банке не может быть ни малиновое, ни клубничное варенье. Значит, там смородиновое варенье. Тогда клубничное и малиновое должны быть в первых двух банках. А так как надписи неправильные, то в банке "клубничное" на самом деле малиновое варенье.
Ответ. Малиновое.
Задача2. Когда учительница ругала Дениса за плохой почерк, он сказал: "У всех великих людей был плохой почерк, значит, я великий человек." Прав ли он?
Решение. Нет, он неправ.
Первым утверждением он говорит, что если человек великий, то у него плохой почерк. Но из этого совершенно не следует, что обратное утверждение тоже верно: то есть, что человек с плохим почерком великий. Таким образом, его вывод неверен.
Можно привести много верных математических утверждений, обратные к которым неверны. Например, если два числа чётны, то их сумма тоже чётна. Но совсем не обязательно, что если сумма двух чисел чётна, то оба они тоже чётны (3 + 5 = 8).
Задача3. У императора украли перец. Как известно, те, кто крадут перец, всегда лгут. Пресс-секретарь заявил, что знает, кто украл перец. Виновен ли он?
Решение. Предположим, что он виновен. Значит, он должен всегда лгать. Кроме того, так как это он украл перец, то он должен знать, кто его украл: это он сам. Но тогда получается, что он сказал правду. Противоречие.
Значит, наше предположение неверно, и виновным он быть не может.
Ответ. Нет.
Задача4. Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или фамилия, или отчество. Может ли такое быть?
Решение. Может.
Например: Иванов Александр Сергеевич
Иванов Павел Васильевич
Гусев Александр Васильевич
Гусев Павел Сергеевич
Задача5. Ковбой Джо приобрел в салуне несколько бутылок Кока-Колы по 40 центов за штуку, несколько сэндвичей по 24 цента и 2 бифштекса. Бармен сказал, что с него 20 долларов 5 центов. Ковбой Джо высказал бармену всё, что он думает о его умении считать. Действительно ли бармен ошибся?
Решение. Выразим цены всех товаров в центах. Так как 40 — чётное число, то несколько бутылок Кока-Колы, купленные Джо, стоят чётное число центов. Аналогично сэндвичи стоят чётное число центов. Так как бифштекса два, то оба они вместе также стоят чётное число центов. Получается, что каждый товар стоит чётное число центов, поэтому стоимость всего заказа должна тоже выражаться чётным количеством центов. Но 20 долларов 5 центов — это 2005 центов: нечётное число. Значит, бармен ошибся.
Задача6. Кто-то подарил Златовласке подарок, положив его на крыльцо её дома. Златовласка подозревает, что это был один из её друзей: Стрекоза, Огонёк или Ушастик. Но как это узнать? Каждый из них указывает на одного из двух других. Правду сказала только Стрекоза. Если бы каждый указывал не на того, на кого указывает, а на второго, то Ушастик был бы единственным, кто сказал правду. Кто же подарил подарок?
Решение. Это не могла быть Стрекоза, так как если бы это она подарила подарок, то она указала бы на себя, так как она сказала правду. Из таких же соображений следует, что это не мог быть Ушастик. Значит, это был Огонёк.
Ответ. Огонёк.
Задача7. Кто-то из трёх друзей таким же образом подарил подарок Синеглазке. На вопросы Синеглазки Огонёк отвечал, что это Ушастик, а что сказали Ушастик и Стрекоза, Синеглазка забыла. Златовласка взяла дело в свои руки и выяснила, что только один из троих сказал правду, и именно он и сделал подарок. Кто подарил подарок?
Решение. Так как тот, кто подарил подарок, сказал правду, то он должен был указать на себя. Поэтому подарок подарил не Огонёк, так как он указал на Ушастика. Кроме того, отсюда следует, что он сказал неправду. Значит, подарок подарил не Ушастик. Получается, что это была Стрекоза.
Ответ. Стрекоза.
Задача8. Клоуны Бам, Бим и Бом вышли на арену в красной, синей и зелёной рубашках. Их туфли были тех же трёх цветов. Туфли и рубашка Бима были одного цвета. На Боме не было ничего красного. Туфли Бама были зелёные, а рубашка нет. Каких цветов били туфли и рубашка у Бома и Бима?
Решение. Составим таблицу:
Бам | Бим | Бом | |
рубашка | не зел. | одинак. | не кр. |
туфли | зел. | одинак. | не кр. |
У Бама зелёные туфли, поэтому двум другим клоунам остаются синие и красные. У Бама не красные. Значит, у него синие, а красные у Бима. Тогда рубашка у Бима тоже красная.
Бам | Бим | Бом | |
рубашка | не зел. | кр. | не кр. |
туфли | зел. | кр. | син. |
Баму и Бому остаются зелёная и синяя рубашки. У Бама не зелёная. Значит, у него синяя, а зелёная у Бома.
Бам | Бим | Бом | |
рубашка | син. | кр. | зел. |
туфли | зел. | кр. | син. |
Ответ. У Бома зелёная рубашка и синие туфли. У Бима красная рубашка и красные туфли.
Задача9. Богини Гера, Афина и Афродита пришли к юному Парису, чтобы тот решил, кто из них прекраснее. Представ перед Парисом, богини высказали следующие утверждения:
Афродита: "Я самая прекрасная".
Афина: "Афродита не самая прекрасная".
Гера: "Я самая прекрасная".
Афродита: "Гера не самая прекрасная".
Афина: "Я самая прекрасная".
Парис предположил, что все утверждения прекраснейшей из богинь истинны, а все утверждения двух других богинь ложны. Мог ли Парис вынести решение, кто прекраснее из богинь?
Решение. Если Афина самая прекрасная, то Афродита не самая прекрасная и должна говорить неправду. Тогда утверждение "Гера не самая прекрасная." должно быть неправдой. Но оно верно. Противоречие.
Если Гера самая прекрасная, то Афина не самая прекрасная и должна говорить неправду. Тогда утверждение "Афродита не самая прекрасная." должно быть неправдой. Но оно верно. Противоречие.
Значит, самой прекрасной может быть только Афродита. Легко убедиться, что это вариант подходит.
Ответ. Афродита.
Задача10. Каждый житель острова Сонный просыпается всегда одним и тем же способом. Способов всего три: (А) открыть одновременно оба глаза и бежать на зарядку; (Б) открыть сначала левый глаз, а через 16 минут — правый, и бежать на завтрак; (В) открыть сначала правый глаз, а через 27 минут — левый. В социологическом опросе службы "Доброе утро" приняли участие жители городов Кривдина и Правдина, всего 1024 островитянина. Каждому было задано по 3 вопроса: (1) "Просыпаетесь ли Вы способом А?", (2) "Просыпаетесь ли Вы способом Б?", (3) "Просыпаетесь ли Вы способом В?" Ответов "Да" на первый вопрос было 289, на второй вопрос — 361, на третий вопрос — 441. Сколько жителей каждого из городов приняло участие в опросе?Решение. Для каждого человека подходит только один вариант ответа, а два не подходят. Поэтому житель города Правдина должен один раз ответить "Да" и два раза "Нет", а житель города Кривдина, наоборот, один раз "Нет" и два раза "Да". Таким образом, если бы все участники опроса были из Правдина, то ответов "Да" было бы столько же, сколько и участников, то есть, 1024. Каждый житель Кривдина даёт два ответа "Да", добавляя один лишний ответ.
Всего ответов "Да" было 289 + 361 + 441 = 1091. Значит, жителей Кривдина было 1091 − 1024 = 67. А жителей Правдина 1024 − 67 = 957.
Ответ. 957 жителей Правдина и 91 житель Кривдина.
Математические игры
Задача 1. Двое по очереди берут из кучи камни. Разрешается брать любую степень двойки (1, 2, 4...). Взявший последний камень выигрывает. Кто победит в этой игре?
Решение. Если исходное число камней делится на 3, то выигрывает второй, беря каждый раз по 1 или 2 камня и оставляя число камней, которое делится на 3
Задача 2. В куче 1997 камней, которые двое берут по очереди. Разрешается взять 1, 10 или 11 камней. Выигрывает взявший последний камень. Кто должен победить?
Решение. Первый. Начнём с конца. Выигрывающие остатки камней: 0, 2, 4, 6, 8; 20, 22, 24, 26, 28; ...; 1980, 1982, 1984, 1986, 1988 . Первым ходом первый игрок берёт 11 камней.
Задача 3. Изменим условие предыдущей задачи: взявший последний камень проигрывает. Кто теперь победит?
Решение. Победит снова первый. Выигрывающие остатки камней: 1, 3, 5, 7, 9; 21, 23, 25, 27, 29; ...; 1981, 1983, 1985, 1987, 1989. Первый сначала берёт 10 камней.
Задача 4. Двое по очереди берут камни из двух куч. За один ход можно взять: а) любое число камней из одной кучи или б) из обеих куч поровну. Взявший последним выигрывает. Кто должен выиграть?
Решение. Сначала рассмотрим пример игры. Пусть первоначальное значение камней в кучах - 1000 и 18. Будем записывать остаток камней в каждой куче после каждого хода: (11, 18), (5, 12), (5, 3), (1, 3), (1, 2), (1, 1), (0, 0). Набор (1, 2), который обеспечил первому игроку победу, назовём выигрывающим. Разность между числами равна d=2-1=1. Найдём предыдущую выигрывающую комбинацию: взяв разность d=2, видим, что первым числом должно быть такое, какое еще не встречалось в выигрывающих комбинациях (т.е. 3), а второе-сумма первого и d (т.е. 5). Поэтому же принципу получим и следующие выигрывающие комбинации: d = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ...; a = 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17,…; b = 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28 ...
Задача 5. В трёх кучах лежат 1997, 1998 и 1999 камней. Играют двое. За один ход разрешается убрать две кучи, а третью разделить на три новые (непустые) кучи. Выигрывает тот, кто не может сделать ход. Кто победит-первый или второй игрок?
Решение. Выигрывает первый. Стратегия выигрыша проста: надо добиваться, чтобы некоторых новых кучах число камней оканчивалось цифрами 3 или 4, а в остальных новых кучах - не превышало 4. Например, кучу из 1999 камней можно разделить на такие три: 563, 663, 773 или 2, 3, 1994 и т. д. Легко видеть, что противник не может воспользоваться той же стратегией. Через несколько ходов первый игрок предложит 3 кучи: в одной 3или 4 камня, в двух других - не более, чем по 4. Второй игрок может сделать ход, а следующий ход уже невозможен.
Задача 6. Двое играющих по очереди красят полоску из 150 клеток: первый всегда красит две клетки подряд, а второй - три. Проигрывает тот, кто не может сделать ход. Кто должен выиграть при правильной игре?
Решение. Первый. В какой-то момент (можно на первом ходу) он оставляет незакрашенный просвет в две клетки и не трогает его, пока есть не менее трёх незакрашенных клеток подряд.
Задача 7. Двое играют на полосе из 12 клеток. При каждом ходе можно поставить на любое поле шашку или сдвинуть на одну клетку вправо выставленную ранее шашку. Игрок выигрывает, когда занимает шашкой последнее свободное поле полосы. Кто победит? (Понятно, что на каждой клетке может размещаться только одна шашка.)
Решение. Второй, Он постоянно следит, чтобы каждая группа свободных полей (между шашками и от шашек до границ) была четной.
Задача 8. Двое играют, поочередно выставляя крестики и нолики на квадратном поле 9х9. В конце каждый получает очко за каждую строку и столбец, в которых его знаков больше. Сможет ли первый игрок выиграть
Решение. Да. Он занимает центральное поле и далее отвечает центрально - симметрично ходам второго игрока. В результате он выиграет центральную строку и столбец, а остальные распределятся поровну. Счет 10:8.
Задача 9. Из 1997 первый играющий вычитает 1, 7 или 9. Второй вычитает из результата число, которое записывается одной из нулевых цифр результата, и т. д. Побеждает тот, у кого получится 0. У кого?
Решение. У первого. Он вычтет 7. И далее всегда будет вычитать последнюю цифру. Тогда второй будет иметь последовательно числа1990, 1980, ..., 10, 0.
Задача 10. Поставлено 10 точек в ряд. Двое играющих поочередно заменяют точки цифрами. Второй игрок стремится к тому, чтобы полученное число делилось на 41. Удастся ли ему этого добиться?
Решение.Да. Разобьем 10 разрядов на две группы по 5.Когда первый пишет некоторую цифру, второй пишет ее дополнение до 9 в тот же разряд другой половины. В результате получится число: 105С + 99999 – С = 10 5 (С+1) - (С+1) = 99999 (С+1), но 99999 делится на 41.
Задача 11. Перед числами 1, 2, ..., 100 двое играющих по очереди ставят знаки плюс или минус. Когда все знаки расставлены, вычисляется сумма. Первый стремится минимизировать ее модуль, второй - сделать его как можно больше. Какой результат можно считать ничейным? Каковы границы модуля суммы?
Решение. Когда первый игрок ставит знак перед числом 100 или 99, второй ставит тот же знак перед вторым из этих чисел. Допустим, это плюсы. Чтобы уменьшить эту сумму (199), первый игрок должен ставить минусы перед числами 98, 96, ..., 2. Второй игрок поставит плюсы перед числами 97, 95, ..., 1.
Ответ:150; [0; 5050].
Задача 12. Выписаны в ряд числа от 1 до 1997.Играют двое. За один ход можно вычеркнуть любое число и все его делители. Выигрывает тот, кто зачеркивает последнее число. Докажите, что это первый игрок.
Решение.Для доказательства можно не предъявлять выигрывающую стратегию. Пусть на числах от 2 до 1997 у начинающего есть выигрыш, тогда задача решена (1 вычеркивается вместе с любым первым числом). Если же на этих числах начинающий проигрывает, то первым ходом вычеркнем 1 и передадим ход второму игроку.
Задачи на проценты
Задача 1. Товар стоил тысячу рублей. Продавец поднял цену на 10%, а через месяц снизил её на 10%.Сколько стал стоить товар?
Решение. После подорожания товар стоил 1100 рублей. При снижении цены 1100 руб. – 100% , 110 рублей – 10% стоимости товара, следовательно, товар стал стоить 1100 - 110 =990 рублей.
Ответ: 990 рублей.
Задача 2. Собрали 100 кг грибов. Оказалось, что их влажность 99%. Когда грибы подсушили, влажность снизилась до 98%. Какой стала масса этих грибов после подсушивания?
Решение.В 100 кг грибов содержится, по условию, 99 кг воды и 1 кг сухого вещества. После подсушивания сухое вещество стало составлять 2% .Но если 2% составляют 1 кг, то вся масса грибов равна 50 кг.
Задача 3. Цена входного билета на стадион была 1 рубль 80 копеек. После снижения входной платы число зрителей увеличилось на 50% , а выручка выросла на 25% .Сколько стал стоить билет после снижения?
Решение.Входная плата с каждых двух зрителей до снижения была 3рубля 60 копеек. После снижения вместо каждых двух зрителей стадион посещали три человека, платившие по 3руб.60 коп + 90 коп.= 4 руб.50 коп. Стоимость билета 4 рубля 50 копеек : 3 = 1 рубль 50 копеек.
Ответ:1 руб.50 коп.
Задача 4. По дороге идут два туриста. Первый из них делает шаги на 10% короче и в то же время на 10% чаще, чем второй. Кто из туристов идет быстрее и почему?
Решение. Покажем, что медленнее идет тот из туристов, кто делает шаги короче и чаще (первый). Когда второй турист делает 10 своих шагов длиныs каждый, первый турист делает 11 своих шагов длины 0,9s каждый. Таким образом, первый турист проходит расстояние 9,9s за то время, за которое второй проходит расстояние 10s, но 10s > 9,9s, так как s > 0.
Задача 5. Цену за товар уменьшили на 10%, а затем еще на 10%. Стоит ли он дешевле, если цену сразу снизить на 20%?
Решение.Введем переменную x, обозначив через нее первоначальную цену, и составим выражение для новой цены в случае поэтапного снижения: 0,9*(0,9*x) = 0,81*x и в случае снижения сразу на 20% - 0,8*x
Задача 6. На овощную базу привезли 10 тонн крыжовника, влажность которого 99% .За время хранения на базе влажность уменьшилась на 1%. Сколько тонн крыжовника теперь хранится на базе?
Решение. Без влаги масса ягод стала равна 2% , т.е. общая масса уменьшилась в два раза и стала 5 тонн.
Ответ: 5 тонн.
Задача 7. Числитель дроби увеличили на 20%. На сколько процентов надо уменьшить её знаменатель, чтобы в итоге дробь возросла вдвое?
Решение. Для начала рассмотрим какой-нибудь пример, скажем, дробь 00/100 = 1. После увеличения в числителе будет 120, поэтому в знаменателе после уменьшения должно остаться 60%.Другими словами, надо уменьшить знаменатель на 40 %. Проверим ответ для общего случая: пусть есть дробь a/b. После увеличения числителя на 20% он станет равным 1,2а. Если уменьшить знаменатель на 40% , то он станет равным 0,6b.Тогда дробь станет равной 1,2а / 0,6b = 2*a / b, что и требуется.
Ответ: на 40%.
Задача 8. Матроскин продает молоко через магазин и хочет получать за него 50 рублей за литр. Магазин удерживает 20% стоимости проданного товара. По какой цене будет продаваться молоко в магазине?
Ответ: 62,5 рублей.
Задача 9. Рабочий в феврале увеличил производство труда по сравнению с январем на 5%, а в марте увеличил её снова по сравнению с предыдущим месяцем на 10%. Сколько деталей изготовил рабочий в марте, если в январе изготовил 200 деталей?
Ответ: 231 деталь
Задача 10. Один покупатель купил 25% имевшегося куска полотна, второй покупатель 30% остатка, а третий - 40% нового остатка. Сколько (в процентах) полотна осталось непроданным?
Ответ: 31,5 % осталось непроданным
Задача 13. Сколько белых грибов надо собрать для получения 1 кг сушеных, если при переработке свежих грибов остается 50% их массы, а при сушке остается 10% массы обработанных грибов?
Ответ: 20 кг.
Задача 14. Бригада косарей в первый день скосила половину луга и еще 2 га, а во второй день 25% оставшейся части и последние 6 га. Найти площадь луга.
Решение:6 га составляют 75% (3/4) оставшейся части, значит, вся оставшаяся часть равна 8 га. По условию половина луга больше 8 га на 2 га, т. е. равна 10 га ( 8 + 2 = 10). Значит, весь луг занимал 20 га ( 10*2 = 20).
Ответ: 20 га.
Задача 15. Как изменится в процентах площадь прямоугольника, если его длина увеличится на 30%, а ширина уменьшится на 30%?
Ответ: площадь уменьшится на 9%.
Задача 16. В драматическом кружке число мальчиков составляет 80% от числа девочек. Сколько процентов составляет число девочек в этом кружке от числа мальчиков?
Решение. Пусть девочек х, тогда мальчиков 0,8х. Число девочек составляет от числа мальчиков (х / 0,8)*100% = 125%.
Задача 17. Перерабатывая цветочный нектар в мед, пчелы освобождают его от значительной части воды. Нектар содержит 70% воды, а мед 16%. Сколько килограммов нектара надо переработать для получения 1 кг меда?
Ответ:2,8 кг.
Задача 18. Имеется 735 г 16%-ного раствора йода в спирте. Нужно получить 10%- ный раствор йода. Сколько граммов спирта надо долить для этого к уже имеющемуся раствору?
Ответ:441 г.
Задача 19. В бассейн проведена труба. Вследствие засорения её приток воды уменьшился на 60%. На сколько процентов вследствие этого увеличится время, необходимое для заполнения бассейна
Решение. 1) 100% - 60% = 40% = 0,4 - такую часть составляет оставшийся приток воды. 2) 1 : 0,4 = 2,5 (раза) - во столько раз увеличится время, необходимое для наполнения бассейна, т.е. увеличится на 150%.
Ответ: на 150% .
Задача 20. Ширину прямоугольника увеличили на 3,6 см, а длину уменьшили на 16%. В результате площадь нового прямоугольника оказалась больше прежнего на 5%.Найти ширину нового прямоугольника.
Ответ:18 см.
Задача 21. Каждую сторону квадрата увеличили на 20%. На сколько процентов увеличилась площадь квадрата?
Ответ: увеличилась на 44%.
Задача 22. На сколько процентов увеличится объем куба, если каждое его ребро увеличить на 10%?
Ответ: увеличится на 33,1%.
Задача 23. 5 литров сливок с содержанием жира 35% смешали с 4 литрами 20%-ных сливок и к смеси добавили 1 литр чистой воды. Какой жирности получилась смесь?
Решение.1) 5*0,35 = 1,75 (л) жира в 5 л сливок. 2) 4*0,2 = 0,8 (л) жира в 4 л сливок. 3)1,75 + 0,8 = =2,55 (л) жира в смеси. 4) 5 + 4 + 1 = 10 (л) - вес смеси. 5)2,55 : 10 = 25,5%- жирность смеси.
Ответ: 25,5%.
Задача 24. В свежих грибах было 90% воды. Когда их подсушили, то они стали легче на 15 кг при влажности 60%. Сколько было свежих грибов?
Ответ: 20 кг.
Задача 25. Под кукурузу отвели участок поля в форме прямоугольника. Через некоторое время первоначальную длину участка увеличили на 35%,а ширину уменьшили на 14%, На сколько процентов изменилась площадь участка?
Ответ: 16,1%.
Задача 26. Куб с ребром 8 см покрасили со всех сторон, а затем распилили на кубики с ребром 1 см. Какой процент среди них составляют кубики, имеющие только одну окрашенную грань?
Ответ: 42,1875 или 42,2%.
Задача 27. Одно из слагаемых составило 5/12 другого. Сколько процентов от суммы составляет меньшее слагаемое? (ответ дать с точностью до 0,1%)
Решение.Пусть второе слагаемое 1, тогда первое слагаемое 5 / 12, а сумма 17 / 12. 5 / 12 от 17 / 12 составляют 5 / 17 = 0,294 = 29,4%.
Ответ: меньшее слагаемое составляет 29,4% от суммы.
Задача 28. Вычитаемое составляет 7/13 уменьшаемого. Сколько процентов вычитаемого составляет разность?
Решение.Пусть уменьшаемое 1, тогда вычитаемое 7 / 13, а разность 6 / 13 (1 - 7/13 = 6 / 13). 6/13 от 7/13 составляет 6 / 7 = 85,7%.
Задача 29. Заработок рабочего повысился на 20%, а цены на продукты и другие товары снизились на 15%. На сколько процентов рабочий теперь на свой заработок может купить больше продуктов и товара, чем прежде ?
Ответ:на 41% больше, чем прежде.
4.Задачи на взвешивания и переливания
4.1 Задачи на сравнения с помощью весов:
Задача 1. На одной чашке весов лежат 6 одинаковых яблок и 3 одинаковые груши, на другой чашке - 3 таких же яблоке и 5 таких же груш.
Весы находятся в равновесии. Что легче: яблоко или груша?
Решение.Так как весы находятся в равновесии, а все яблоки и все груши
одинаковы по весу, то: 6 яблок + 3 груши = 3 яблока + 5 груш;
Снимем с обеих чашек по 3 яблока и по 3 груши, получим:
3 яблока = 2 груши, значит, 1 груша тяжелее 1 яблока.
Ответ: груша тяжелее.
Задача 2. Груша и слива весят столько, сколько весят 2 яблока ; 4 груши
весят столько, сколько весят 5 яблок и 2 сливы. Что тяжелее:7 яблок или 5 груш?
Решение. По условию задачи имеем: 1 груша + 1 слива = 2 яблока;
4 груши = 5 яблок + 2 сливы. Добавим на обе чашки весов второго равенства равные по весу (1 груша + 1 слива) и 2 яблока : 4 груши + ( 1 груша + 1 слива) = 5 яблок + 2 сливы + 2 яблока ; 5 груш + 1 слива = 7 яблок + 2 сливы ;
Снимем с обеих чашек по 1 сливе, получим: 5 груш = 7 яблок + 1 слива,
значит, 5 груш тяжелее 7 яблок.
Ответ: 5 груш тяжелее.
Задача 3. На одной чашке весов лежит кусок мыла, а на другой три
четверти такого куска и еще три четверти килограмма. Весы находятся в равновесии. Сколько весит кусок мыла?
Решение.Разделим кусок мыла на 4 равные части, тогда 4 равные части куска мыла = 3 такие же части мыла + кг; Снимем с каждой чашки по 3 части, получим: 1 часть = кг, значит, целый кусок весит 3 кг.
Ответ: 3 кг.
Задача 4. 4 чашки и 1 кувшин весят столько, сколько весят 17 свинцовых
шариков. 1 кувшин весит столько же, сколько 7 свинцовых
шариков и 1 чашка. Сколько шариков уравновешивает кувшин?
Решение. По условию задачи имеем: 4 чашки + 1 кувшин = 17 шариков;
1 кувшин = 7 шариков + 1 чашка. На первые весы вместо 1 кувшина ставим 7 шариков + 1чашку, получим: 4 чашки + (7 шариков + 1 чашка) = 17 шариков ; 5 чашек + 7 шариков = 17 шариков.
Снимем с каждой чашки по 7 шариков, получим: 5 чашек = 10 шариков,
рассуждая дальше, получим, что 1 чашка уравновешивает 2 шарика, а значит,4 чашки уравновешивают 8 шариков.
А так как 4 чашки + 1 кувшин = 17 шариков, то 8 шариков + 1 кувшин = 17 шариков. Снимем по 8 шариков, получим, что 1 кувшин = 9 шариков.
Ответ: 9 шариков.
4.2 Задачи на взвешивания с гирями:
Задача 5. У барона Мюнхгаузена есть 8 внешне одинаковых гирек весом 1г, 2 г, 3 г, …, 8 г. Он помнит, какая из гирек, сколько весит, но граф
Склероз ему не верит. Сможет ли Барон провести одно взвешивание на чашечных весах, в результате которого будет однозначно установлен вес хотя бы одной из гирь?
Решение.Так как, 7г + 8 г = 1 г + 2 г + 3 г + 4 г + 5г, то остается 6г, значит, за одно взвешивание барон сможет установить вес одной гирьки в 6 г.
Ответ : да, сможет.
Задача 6. Имеются двухчашечные весы и гири массой 1, 3, 9 , 27 и 81 г.
На одну чашку весов кладут груз, гири разрешается класть на обе чаши.
Докажите, что весы можно уравновесить, если масса груза равна :
а) 31г; б) 52 г ; в) 74 г ; г) 80 г.
Решение: Так как гири можно класть на обе чашки весов, то гири в 1г и 3 г
дают возможность взвесить массы в 1г+ 4г, добавляя гирю в 9 г, получаем возможность взвешивать от 5 г до 13 г, добавляя гирю в 27 г получаем возможность взвешивать от 13 г до 31 г, добавляя гирю в 81 г получаем возможность взвешивать от 31 г до 121 г, следовательно, имеем:
а) 31 г = 1г + 3 г + 27 г;
б) 52г + 3 г + 27 г = 81 г + 1г;
в) 74 г +1 г + 9 г = 81 г + 3г;
г) 80 г + 1 г = 81 г.
Задача 7. Золотоискатель Джек добыл 9 кг песка. Сможет ли он за три
взвешивания отмерить 2 кг песка с помощью двухчашечных весов с двумя гирями – 200 г и 50 г?
Решение: Первым взвешиванием делим песок на две кучки по 4500 г,
вторым – одну из этих кучек на две кучки по 2250 г, и, наконец, от одной из этих кучек с помощью гирь отсыпаем 250 г.
Ответ: сможет.
4.3 Задачи на взвешивания без гирь:
Задача 8. Из трех одинаковых по виду колец одно несколько легче остальных. Как найти его одним взвешиванием на шашечных весах без гирь?
Решение: Кладем два кольца на весы. Если весы в равновесии, то оставшееся кольцо более легкое; если же одно кольцо перевесит, то оно легче других.
Задача 9. Из 75 одинаковых по виду колец одно кольцо по весу несколько
отличается от других. Как за два взвешивания на чашечных весах
без гирь определить, легче оно или тяжелее остальных?
Решение: Разобьем все кольца на три группы по 25 колец. Положим на
весы по 25 колец. Если весы в равновесии, то отличающееся кольцо находится в третьей группе, тогда кольца с одной чашки убираем и кладем на нее кольца из третьей группы, если чашка с третьей группой колец окажется тяжелее, то искомое кольцо - тяжелее, а если наоборот, то – легче.
Если же одна чашка перевесит сразу же, то более легкие кольца
убираем и кладем на эту чашку кольца третьей группы, ели весы
окажутся в равновесии, то искомое кольцо – легче, а если нет, то - тяжелее.
Задача 10. Дано 6 гирь: две зеленых, две красных, две синих. В каждой паре
одна гиря тяжелая, а другая легкая, причем все тяжелые гири весят одинаково и все легкие тоже. Можно ли на чашечных весах найти все тяжелые гири?
Решение: Положим на одну чашку весов две красную и синюю гири, а на
вторую – красную и зеленую. Если одна из чаш перевесила, то красная гиря, которая на ней лежит – тяжелая. Тогда положим обе красных гири на одну чашку весов, а на вторую – зеленую и синюю гири, которые мы уже взвешивали. Если перевесили красные, то и синяя и зеленая – легкие, если
перевесили синяя и зеленая, то они тяжелые. Если весы остались в равновесии, то не красная гиря, которая при первом взвешивании лежала на перевесившей чашке, тяжелая, а та, которая лежала на другой чашке – легкая.
Если же весы при первом взвешивании оказались в равновесии, то достаточно взвесить красные гири между собой. Та гиря, которая лежала на одной чашке с тяжелой красной – легкая, а та, которая лежала на одной чаше с легкой красной- тяжелая.
Задача 11. Из 27 монет одна фальшивая- она легче остальных. За какое
наименьшее число взвешиваний на чашечных весах без гирь
можно определить фальшивую монету?
Решение: Разобьем все монеты на три кучки по 9 монет. Кладем на каждую чашку весов по 9 монет. Здесь возможны такие случаи:
1)Если весы окажутся в равновесии, то фальшивая монета в третьей кучке.
Разобьем третью кучку на три равные части по 3 монеты и будем взвешивать по 3 монеты. Если весы – в равновесии, то фальшивая монета в отложенной кучке, если же одна чашка весов перевесила, то фальшивая монета на более легкой чашке. И в том и в другом случае берем ту кучку, которая оказалась легче, и разложим ее на три части по 1 монете. Взвесив по одной монете,
определим фальшивую, она окажется либо более легкой на чашке весов, если весы не в равновесии, либо оставшаяся, если весы окажутся в равновесии.
2) Если весы окажутся не в равновесии, то фальшивая монета окажется на чашке весов, которая легче. Далее поступаем так же, как и в первом случае, но только с теми монетами, которые лежат на легкой чашке.
И в первом, и во втором случае достаточно трех взвешиваний.
Ответ: За 3 взвешивания.
Задача 12. Среди 101 одинаковых по виду монет одна фальшивая,
отличающаяся по весу. Как с помощью чашечных весов без гирь
за два взвешивания определить, легче она остальных или тяжелее? Находить фальшивую монету не требуется.
Решение: Взвешиваем по 50 монет. Возможны Следующие случаи :
1).Равенство: Берем оставшуюся монету и ставим ее в левую кучку вместо одной из имеющихся там. Тогда, ели левая кучка тяжелее, то фальшивая монета тяжелее; а если левая кучка легче, то фальшивая монета легче.
2).Неравенство: Берем более тяжелую кучку и разбиваем ее на две кучки по
25 монет. Тогда, если весы в равновесии, то фальшивая монета легче, если же вес кучек неодинаковый, то фальшивая монета тяжелее.
Задача 13. Владелец монетного завода имел 10 рабочих. Каждому утром
он выдавал 500 г золота для изготовления 50 золотых монет по 10 г. Наблюдая несколько дней, он установил, что кто-то из рабочих изготавливает монеты по 9 г, а сэкономленное золото присваивает. Подумав, он нашел способ, чтобы с помощью одного только взвешивания найти нерадивого работника. Как он это сделал?
Решение: Возьмем у первого рабочего 1 монету, у второго рабочего –
2 монеты, у третьего- 3 монеты и так далее, у десятого рабочего 10 монет. Взвесим все взятые монеты. Тогда возможны следующие случаи:
1)фальшивые монеты изготовляет первый рабочий, тогда вес взятых монет будет: 1 9 + 210 + 310 + + 10 10 = 549 (г);
2) фальшивые монеты изготовляет второй рабочий, тогда вес взятых монет будет:
110 = 548 (г)10 + 10 + 9 10 + 10 + 4 9 + 310 + 2
3) фальшивые монеты изготовляет третий рабочий, тогда вес
взятых монет будет:
10 + 310 + 2 1 10 = 547 (г)10 + 10 + 9 10 + 9 + 4
Рассуждая дальше, наконец, получим:
10) фальшивые монеты изготовляет десятый рабочий, тогда вес взятых монет будет:
10 +10 + 2 1 9 = 540 (г)10 + 10 + 9 10 + 10 + 43
Заметим, что вес взятых монет в первом, втором, третьем … десятом случае отличается от веса настоящих монет на 1г, на 2г, на 3г ,…, на 10 г.
55 монет =Вес настоящих монет должен быть: 10 г 550 г. Это означает, что взвесив 55 монет и получив результат 549 г, 548 г, 547 г и т. д.
Мы будем знать, сколько граммов не хватает до 550 г – это число
укажет нам номер нерадивого рабочего.
Задача 14. Султан имел 10 визирей, которые платили ему каждый год
по одному мешку денег. Заметил он, что один из визирей хитрит и дает мешок, в котором каждая монета легче на один грамм. Как при помощи одного взвешивания полученных денег узнать, кто поступает нечестно?
Решение: Задача решается аналогично предыдущей. Берем из каждого
мешка монеты: Из первого 1 монету, из второго – 2 монеты и т.д. из десятого –10 монет и взвешиваем. Вес настоящих монет должен быть:55 монет = 55 г. Узнав, сколько граммов не1г хватает до 55г, мы найдем, из какого мешка были взяты монеты.
Задача15.Переливаем молоко. Из восьмилитрового ведра, наполненного молоком, надо отлить 4 литра с помощью двух пустых бидонов: трехлитрового и пятилитрового.
Решение.
1. Переливаем из восьмилитрового ведра 5 литров молока в пятилитровое.
2. Переливаем из пятилитрового ведра 3 литра в трёхлитровое.
3. Переливаем их теперь в восьмилитровое ведро. Итак, теперь трёхлитровое ведро пусто, в восьмилитровом 6 литров молока, а в пятилитровом - 2 литра молока.
4. Переливаем 2 литра молока из пятилитрового ведра в трёхлитровое, а потом наливаем 5 литров из восьмилитрового в пятилитровое. Теперь в восьмилитровом 1 литр молока, в пятилитровом - 5, а в трёхлитровом - 2 литра молока.
5. Доливаем дополна трёхлитровое ведро из пятилитрового и переливаем эти 3 литра в восьмилитровое ведро. В восьмилитровом ведре стало 4 литра, так же, как и в пятилитровом. Задача решена.
Задача 16.а) Есть 27 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
б) Можно ли определить фальшивую монету за три взвешивания, если монет 25?
Указание. Попробуйте сначала за одно взвешивание на чашечных весах без гирь определить из трёх монет одну фальшивую, если известно, что она тяжелее настоящих.
Решение. а) Разделим монеты на 3 кучки по 9 монет. Положим на чаши весов первую и вторую кучки; по результату этого взвешивания мы точно узнаем, в какой из кучек находится фальшивка (если весы покажут равенство, то она - в третьей кучке). Теперь, аналогично, разделим выбранную кучку на три части по три монеты, положим на весы две из этих частей и определим, в какой из частей находится фальшивая монета. Наконец, остается из трех монет определить более тяжелую; кладем на чаши весов по 1 монете - фальшивкой является более тяжелая; если же на весах равенство, то фальшивой является третья монета из части.
б) Поступаем абсолютно аналогично, только в самом начале разбиваем монеты на 2 кучки по 9 монет и одну из 7 монет, а в случае надобности
кучку из 7 монет разобьём на 2 кучки по 3 монеты и однy "кучку" из одной монеты.
Задача17. а) Какие веса могут иметь четыре гири для того, чтобы с их помощью можно было взвесить любое целое число килограммов от 1 до 15 на чашечных весах (гири можно ставить только на одну чашку)?
б) Какие веса могут иметь три гири для того, чтобы с их помощью можно было взвесить любое целое число килограммов от 1 до 10 на чашечных весах (гири можно ставить на обе чашки)? Приведите пример.
Решение. а) Достаточно гирек весом в 1, 2, 4 и 8 килограммов. В этом нетрудно убедиться, подобрав соответствующие примеры.
б) Нам понадобятся гирьки весом в 3, 4 и 9 килограммов. То, что этот набор действительно позволяет взвесить любое целое число килограммов от 1 до 10, показывают следующие равенства: 1=4-3, 2=9-3-4, 3=3, 4=4, 5=9-4, 6=9-3, 7=3+4, 8=3-4+9, 9=9, 10=4+9-3.
Задача18. Можно ли разлить 50 литров бензина по трём бакам так, чтобы в первом баке было на 10 литров больше, чем во втором, а после переливания 26 литров из первого бака в третий в третьем баке стало столько же бензина, сколько во втором?
Ответ. Нет, нельзя.
Указание. Заметьте, если бы такое переливание было возможно, то во втором баке должно было быть больше чем 26 л бензина.
Решение. При таком переливании во втором баке должно было быть больше 26 л бензина, а в первом — ещё больше, чем во втором. Следовательно, даже если надо было бы наполнить только эти два бака, всё равно на это не хватило бы 50 л. Значит, разделить бензин так, как требуется в условии, невозможно.
Задача19. Имеются неправильные чашечные весы, мешок крупы и правильная гиря в 1 кг. Как отвесить на этих весах 1 кг крупы?Указание. Попробуйте поставить на одну чашку весов гирю в 1 кг и уравновесить весы.
Решение. Можно поступить, например, так: поставим на одну чашку весов гирю весом 1 кг и уравновесим весы крупой из мешка. Теперь снимем с весов эту гирю и вместо нее насыпем крупу. Когда этой крупы станет ровно 1 кг, весы окажутся в равновесии.
Задача20. Имеются чашечные весы без гирь и 4 одинаковые по внешнему виду монеты. Одна из монет фальшивая, причём неизвестно, легче она настоящих монет или тяжелее (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету
Указание. Обратите внимание: требуется определить фальшивую монету, при этом вовсе не требуется указывать, легче она, чем настоящие, или тяжелее.
Решение. Если у нас 3 монеты, достаточно двух взвешиваний. Кладём на каждую чашку весов по одной монете. Если весы не в равновесии, значит, та монета, которая осталась, — настоящая. Кладём её на весы с любой из остальных и сразу определяем, какая из них фальшивая. Если же весы в равновесии, значит, фальшивая монета та, которая осталась, и вторым взвешиванием можно даже определить, легче она или тяжелее, чем настоящие. Если у нас 4 монеты, опять достаточно двух взвешиваний. Разделим наши монеты на две кучки по 2 монеты и положим одну из кучек на весы — по монете на каждую чашку. Если весы в равновесии, то обе монеты на них настоящие. Если весы не в равновесии, то обе монеты на
столе настоящие. Итак, теперь мы знаем, в какой кучке лежит фальшивая монета. Положим на одну чашку весов монету из кучки, где обе настоящие, на вторую — монету из кучки, где фальшивая. Если при этом весы будут в равновесии, значит, фальшивая монета осталась на столе, а если не в равновесии, значит, мы положили её на весы (в этом случае мы даже узнаем, легче она или тяжелее).
Задача21. Имеются чашечные весы со стрелками и десять мешков с монетами. Все монеты во всех мешках одинаковы по внешнему виду, но в одном из мешков все монеты фальшивые и каждая весит по 2 грамма, а в остальных девяти мешках все монеты настоящие и каждая весит по 1 грамму. Как при помощи одного взвешивания определить, в каком мешке фальшивые монеты?
Решение. Возьмём из первого мешка 1 монету, из второго — 2, из третьего — 3,..., из последнего — 10 монет. Всего 1 + 2 + 3 +...+ 10 = 45 монет. Взвесим их. Если бы все они были настоящие, они весили бы 45 граммов, но в нашем случае они будут весить больше. Если фальшивая монета одна, то будет перевес 1 грамм, если две — 2 грамма, ... если десять фальшивых монет — будет перевес 10 грамм. Таким образом, зная перевес, мы сразу определим количество фальшивых монет. А оно, в свою очередь, покажет нам номер мешка, в котором они лежат.
Задача22. Есть три бидона емкостью 14 л, 9 л и 5 л. В большем бидоне 14 литров молока, остальные бидоны пусты. Как с помощью этих сосудов разлить молоко пополам?
Указание. Получите сначала 1 литр, а затем 2 литра в 9-литровом бидоне.
Решение. Приведем схему разливания молока (первое число - сколько литров в 14-литровом бидоне, второе - сколько в 9-литровом, третье - сколько в 5-литровом): 14 0 0 - 9 0 5 - 9 5 0 - 4 5 5 - 4 9 1 - 13 0 1 - 13 1 0 - 8 1 5 - 8 6 0 - 3 6 5 - 3 9 2 - 12 0 2 - 12 2 0 - 7 2 5 - 7 7 0 .
9.Дан мешок сахарного песка, чашечные весы и гирька в 1 г. Можно ли за 10 взвешиваний отмерить 1 кг сахара?
Ответ: да. Причем меньшим числом взвешиваний обойтись нельзя.
Задача23. Известно, что среди ста монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо!).
Решение. Положим сначала на каждую чашу по 50 монет. Затем возьмем более тяжелую часть, разобьем ее на кучки по 25 монет и взвесим их. Если их массы равны, то фальшивая монета легче остальных, иначе - тяжелее остальных.
Задача24. В корзине лежат 13 яблок. Имеются весы, с помощью которых можно узнать суммарный вес любых двух яблок. Придумайте способ выяснить за 8 взвешиваний суммарный вес всех яблок.
Указание. Попробуйте за три взвешивания найти суммарный вес трех яблок.
Решение. Занумеруем яблоки. Взвесим первое яблоко со вторым, второе с третьим и третье с первым, затем сложим полученные веса (где-нибудь в
тетради) и получим удвоенный вес трех яблок, а затем и вес трех яблок, следовательно, за три взвешивания мы узнали суммарный вес первых трех яблок. Осталось пять взвешиваний и десять яблок, которые взвешиваем попарно и, суммируя все данные, получим вес 13 яблок.
5.Задачи на разрезания
Задача1. Разделите фигуру, изображенную на рисунке, на четыре равные части так, чтобы линия разрезов шла по сторонам квадратов. Придумайте два способа решения.
Ответ. См. рисунок
Задача2. Разрежьте фигуры, изображенные на рисунке, на две равные части по линиям сетки так, чтобы в каждой из частей был кружок.
Ответ. См. рисунок
Задача3. Разрежьте фигуры, изображенные на рисунке, на две равные части по линиям сетки так, чтобы в каждой из частей был кружок.
Ответ. См. рисунок
Задача4. На клетчатой бумаге нарисован квадрат размером 5*5 клеток. Придумайте, как разрезать его по линиям сетки на 7 различных прямоугольников.
Ответ. См. рисунок
Задача5. Разделите квадрат размером 4*4 клетки на две равные части так, чтобы линия разрезов шла по сторонам клеток. Найдите все возможные способы решения. (Фигуры, получившиеся при разных способах разрезания, должны быть разными.)
Ответ. См. рисунок
Задача6. Разделите фигуры, изображенные на рисунке, на две равные части. (Разрезать можно не только по сторонам клеток, но и по их диагоналям.)
Ответ. См. рисунок
Задача7. Арбуз разрезали на 4 части и съели. Получилось пять корок. Могло ли такое быть?
Ответ. См. рисунок
Задача8. Разрежьте фигуру, изображенную на рисунке на четыре равные части: (Разрезать можно не только по сторонам клеток, но и по их диагоналям.)
Ответ. См. рисунок
Задача9. Разделите квадрат размером 6*6 клеток, изображенный на рисунке, на четыре одинаковые части так, чтобы каждая из них содержала три закрашенные клетки. Резать можно только по линиям сетки.
Ответ. См. рисунок
6.Задачи на делимость чисел
Задача 1. Найти наименьшее число, которое при делении на 2 дает остаток 1, при делении на 3 - 2, на 4 - 3, на 5 - 4, на 6 - 5, на 7 - 6, на 8 - 7, на 9 - 8, на 10 - 9.
Решение.Если прибавить к искомому числу единицу, тогда полученное число будет делиться на 2, на 3, на 4, на 5, на 6, на 7, на 8, на 9, на 10. Таким наименьшим число является 10 * 9 * 4 * 7 = 2520, а искомое число на 1 меньше, т.е. 2519.
Ответ: 2519
Задача 2. При делении данного числа на 225 в остатке получилось 150. Разделится ли данное число нацело на 75 и почему?
Решение.Да, так как 225 делится на 75 и 150 делится на 75, следовательно, остаток равен нулю. Данное число можно записать так: 225x+150, где x - частное. На основании делимости суммы ясно, что данное число делится на 75.
Задача 3. Найти все числа, большие 25000, но меньшие 30000, которые как при делении на 393, так и при делении на 655 дают в остатке 210.
Решение.НОК (131,1965)=1965
Задача 4. На складе имеются ножи и вилки. Общее число тех и других больше 300, но меньше 400. Если ножи и вилки вместе считать десятками или дюжинами, то в обоих случаях получается целое число десятков и целое число дюжин. Сколько было ножей и вилок на складе, если ножей было на 160 меньше, чем вилок?
Решение.Так как число ножей и вилок (вместе) кратно 10 и 12, значит, оно делится на НОК (10 и12) = 60. .Между числами 300 и 400 только 360 делится на 60.
Ответ: ножей 100, вилок 260.
Задача 5. Изменяется ли при делении с остатком частное и остаток, если делимое и делитель увеличить в 3 раза (ответ подтвердить примером) ?
Ответ: частное не изменится, а остаток увеличится в 3 раза.
Задача 6. Даны три последовательных натуральных числа, из которых первое - четное. Докажите что произведение их кратно 24.
Доказательство. Из трех последовательных натуральных чисел обязательно одно кратно 3, а из двух последовательных четных одно кратно 4.
Следовательно, произведение этих трех чисел делится и на 3, и на 2, и, кроме того, на 4, т.е. на 3 * 2 * 4 = 24.
Задача 7. Отец и сын решили перемерить шагами расстояние между двумя деревьями, для чего отошли одновременно от одного и того же дерева. Длина шага отца - 70см, сына - 56 см. Найти расстояние между этими деревьями, если известно, что следы их совпали 10 раз.
Решение.70 = 2 * 5 * 7, 56 = 2 * 7 * 4.
1) НОК(70, 56) = 70 * 4 = 280. Через каждые 280 см следы отца и сына совпадают.
2) 280 * 10 = 2800 (см), 2800 см = 28 м - расстояние между деревьями.
Задача 8. Для устройства елки купили орехов, конфет и пряников - всего 760 штук. Орехов взяли на 80 штук больше, чем конфет, а пряников на 120 штук меньше, чем орехов. Какое наибольшее число одинаковых подарков для детей можно сделать из этого запаса?
Решение.Из рисунка видно, что пряников было 200 штук, орехов 320, а конфет 240. НОД (200, 240, 320) = 40. Наибольшее количество подарков - 40.
пряников
|------------------------------|
конфет
Всего - 760 |------------------------------|-----------|
40
орехов 120
|------------------------------|-----------------------------------------|
Задача 9. Если сложить несократимую дробь с единицей, то вновь полученная дробь будет также несократима. Почему?
Решение.НОД числителя и знаменателя несократимой дроби равен 1, значит, НОД суммы числителя со знаменателем равен 1, т.е. и вновь полученная дробь несократима.
Задача 10. Доказать, что произведение НОД и НОК двух данных чисел равно произведению этих чисел.
Доказательство. Так как НОК это произведение первого числа на недостающие множители из второго числа, то во втором числе невзятыми оказались множители, которые уже есть в первом числе (т.е. их НОД). Значит, произведение НОК на НОД равно произведению данных чисел.
Задача 11. Витя сказал своему другу Коле: “ Я придумал пример на деление, в котором делимое, делитель, частное и остаток оканчиваются соответственно на 1, 3, 5, 7 “. Подумав, Коля ответил: “Ты путаешь что – то”. Прав ли Коля?
Решение.Пусть делимое - a, делитель - b, частное – q ,остаток - r. Тогда а = b * q + r. Т. к. b и q оканчиваются на 3 и 5, то они нечетные и их произведение нечетно. Так как r оканчивается на 7, оно нечетно, следовательно, b * q + r - четно, но a оканчивается на 1 и нечетно. Поэтому Коля прав.
Задача 12. Какую цифру надо поставить вместо буквы А в запись числа А37, чтобы оно делилось: а) на 6 , б) на 9?
Ответ:а) Какую бы цифру мы не поставили вместо А, число А37 на 6 делиться не будет, так как оно не делится на 2. б) Чтобы число А37 делилось на 9, надо чтобы сумма его цифр делилась на 9, т.е. А + 3 + 9 должно делиться на 9, а А + 10 делится на 9 только если А = 8.
Задача 13. По периметру звезды в кружки впишите все числа от 1 до 10 так, чтобы суммы чисел в любых двух соседних кружках не делились ни на 3, ни на 5, ни на 7.
Ответ:1, 10, 7, 4, 9, 2, 6, 5, 8, 3 (по часовой стрелке, начиная с любого кружка).
Задача 14. Четыре числа попарно сложили и получили шесть сумм. Известно четыре наименьшие из этих сумм 1, 5, 8 и 9. Найдите две остальные суммы и сами исходные числа.
Ответ:две остальные суммы равны 12 и 16, а сами числа равны либо (-1), 2, 6, 10, либо (-3 / 2), 5/2, 13/2, 19/2.
Задача 15. Шарик умножил первые 10 простых чисел и получил число 6469693250. - Ты не прав, - сказал Матроскин. Почему?
Ответ:Например, потому, что получившееся у Шарика число не делится на 3 или поскольку делится на 25. Ни того, ни другого быть не может.
Задача 16. Напишите наибольшее пятизначное число, кратное 9, такое, чтобы его первой цифрой была 3, а все остальные цифры были бы различны.
Решение.Наибольшее пятизначное число, первая цифра которого 3, а остальные цифры различные, это 39876. Оно не делится на 9, но делится на 3, так как сумма его цифр равна 33. Из 9 идущих подряд чисел одно обязательно делится на 9. Если из числа 39876 вычесть 6, то получим 39870. Это число и является искомым, так как 39873 на 9 не делится.
Задача 17. НОК двух чисел, не делящихся друг на друга, равно 630, а НОД их равен 18. Найти эти числа.
Решение. 630 : 18 = 35 (5 * 7 - произведение различных множителей данных чисел). Так как одно число не делится на другое, то эти числа могут быть только 5 * 18 = 90 и 7 * 18 = 126.
Задача 18. Доказать, что если сумма двух чисел есть число нечетное, то произведение этих чисел всегда будет числом четным.
Решение.Сумма двух чисел - число нечетное, следовательно, одно слагаемое - четное, а другое - нечетное. Произведение четного числа на любое целое число есть число четное.
Задача 19. Даны дроби 8 / 15 и 18 / 35. Найти наибольшее из всех чисел, при делении на которое каждой из данных дробей получаются целые числа.
Решение.НОК (15 и 35) = 105. НОД (8 и 18) = 2, значит, 2 / 105 - наибольшее число, при делении на которое 8 / 15 и 18 / 35 дают в частных целые числа. Действительно, (8/15):(2/105) = 28 (целое), (18/35):(2/105) = 27 (целое).
Задача 20. Произведение четырех последовательных чисел равно 1680. Найдите эти числа.
Ответ:1680 = 2 * 2 * 2 * 2 * 3 * 5 * 7 = 5 * 6 * 7 * 8.
Задача 21. В египетской пирамиде на гробнице начертано число 2520. Почему именно этому числу выпала “такая честь”? Одна из версий :данное число делится на все без исключения натуральные числа от1 до 10.Проверьте это.
Ответ:2520 = 2 * 2 * 2 * 3 * 5 * 7, т.е. данное число делится на 2, 3, 4, 5, 6, 7, 8, 9, 10.
Задача 22. Записав шесть различных чисел, среди которых нет 1, в порядке возрастания и перемножив, Оля получила в результате 135135. Запишите числа, которые перемножила Оля.
Ответ:135135 =1001 * 135, 135 = 3 * 5 * 9, 1001 = 7 * 11 * 13, значит, 135135 = =3*5*7*9*11*13.
Задача 23. Доказать, что если сумма двух чисел есть число нечетное, то произведение этих чисел всегда будет числом четным.
Доказательство. Сумма двух чисел - число нечетное, следовательно, одно слагаемое - четное, а другое - нечетное. Произведение четного числа на любое целое число есть число четное.
Задача 24. Делится ли число 101996 + 8 на 9? Ответ обоснуйте.
Решение.Заметим, что 101996 + 8 = 100...008 (всего 1995 нулей). Сумма цифр этого числа делится на 9, следовательно, и само число делится на 9.
7.Принцип Дирихле
Задача 1. В корзине лежат 30 грибов - рыжиков и груздей. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов - хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине.
Решение.19 рыжиков и 11 груздей. Если бы в корзине нашлись 12 груздей, то ни один из них не был бы рыжиком, следовательно, количество груздей не превосходит 11. Если бы груздей было меньше 11, то их было бы не больше 10.
В этом случае можно было бы найти 20 не груздей, следовательно, груздей - 11. Рыжиков - 19.
Задача 2. В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?
Решение. Достанем из мешка 3 шарика. Если бы среди шариков было не более одного шарика каждого из двух цветов, то всего было бы не более двух шариков - это очевидно, и противоречит тому, что мы достали 3 шарика. С другой стороны, понятно, что двух шариков может и не хватить. Ясно, что “ зайцами ” здесь являются шарики, а “ клетками” - цвета: черный и белый.
Задача 3. В магазин привезли 25 ящиков с тремя сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков одного сорта.
Решение. В решении этой задачи нам поможет обобщенный принцип Дирихле: “ Если в n клетках сидят не менее kn + 1 зайцев, то в какой-то из клеток сидит, по крайней мере, k + 1 заяц. 25 ящиков – “зайцев” - рассадим по 3 “клеткам” - cортам. Так как 25 = 3 * 8 + 1, то, применив обобщенный принцип Дирихле для n = 3, k = 8,получим, что в какой-то “ клетке” – сорте не менее 9 ящиков.
Задача 5. В бригаде 7 человек и их суммарный возраст 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142.
Решение. Рассмотрим всевозможные тройки рабочих бригад. Сумма их суммарных возрастов, как легко подсчитать, равна 15*332, а таких троек 35. Значит, есть тройка, суммарный возраст в которой не меньше, чем (15*332):35, что больше 142.
Задача 6. В непрозрачном мешке лежат 5 белых и 2 черных шара. а) Какое наименьшее число шаров надо вытащить из мешка, чтобы среди них обязательно оказался хотя бы один белый шар?
Решение. “Худшим”, здесь является случай, когда мы будем вытаскивать все время черные шары. В этом случае, даже вытащив подряд 2 шара, мы не вытащим белого шара. Но если мы вы тащим 3 шара, то тогда уж точно из трех шаров по крайней мере один шар будет белым.
б) Сколько шаров надо вытащить, чтобы среди них обязательно оказался хотя бы один белый и хотя бы один черный шар?
Решение.“ Худшим ” здесь является случай, когда мы сначала будем вытаскивать одни белые шары и только потом попадается один черный шар. Поэтому потребуется вытащить 5 + 1 = 6 шаров.
в) Какое наименьшее число шаров надо вытащить, чтобы среди них наверняка оказались 3 белых и 1 черный шар?
Решение.В “ худшем “ случае мы сначала вытащим все белые шары, и затем лишь пойдут черные. Тогда придется вытащить 5 + 1 =6 шаров.
г) Сколько шаров надо вытащить, чтобы среди них оказались два шара одного цвета?
Решение.“ Худший “ случай - когда сначала идут шары разных цветов. Это возможно, если мы вытащим 2 шара. А если мы вытащим третий, то уже будем иметь два шара одного цвета.
Задача 7. Cколько надо взять двузначных чисел, чтобы по крайней мере одно из них делилось: а) на 2, б) на 7?
Решение.а) В “ худшем “ случае, вытаскивая из мешка числа от 10 до 99, мы сначала будем иметь только нечетные числа - их 45, и поэтому 46-е число обязательно будет четным.
б) Среди 90 чисел от 10 до 99 имеется всего 13 чисел, делящихся на 7, т.е. в “худшем ” случае мы сначала вытащим 90 - 13 = 77 чисел, не делящихся на 7, но 78-е число уже точно будет делиться на 7.
Задача 8. Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.
Решение.Этой задачи можно начать с вопроса о количестве различных остатков от деления числа на 11. Получив ответ, что их ровно 11, можно сделать вывод о том, что среди 12 чисел найдутся, по крайней мере, два, имеющие одинаковые остатки. Разность этих чисел и будет делится на 11. После этого надо найти “ зайцев” (12 чисел) и “ клетки ” (остатки от деления на 11).
Задача 9. Докажите, что в любой копании из пяти человек двое имеют одинаковое число знакомых.
Решение.Имеются пять вариантов числа знакомых: от 0 до 4.Остается заметить, что если у кого-то четверо знакомых, то ни у кого не может быть ноль знакомых. ("Клетки", соответствующие 0 и 4, взаимно исключают друг друга.) Поэтому можно говорить о четырех “ клетках “- вариантах числа знакомых. Поскольку в компании пять человек – “зайцев ”, по принципу Дирихле обязательно найдутся хотя бы два человека, имеющие одинаковое число знакомых.
Задача 10. 10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть решившие ровно одну задачу, решившие ровно две задачи и решившие ровно три задачи. Докажите, что среди них есть школьник, решивший не менее пяти задач.
Решение. Из условия задачи можно заключить, что найдутся семь школьников, решивших 35 - (1 + 2 + 3) = 29 задач. Так как 29 = 7 * 4 + 1, то найдется школьник, решивший не менее 5 задач.
Задача 11. В школе 20 классов. В ближайшем доме живут 23 ученика этой школы. Можно ли утверждать, что среди них обязательно найдутся хотя бы два одноклассника?
Ответ:можно, так как классов (20) меньше, чем учеников (23).
Задача 12. В школе учится 370 человек. Докажете, что среди всех учащихся найдутся два человека, празднующие свой день рождения в один и тот же день.
Ответ:в году 365 дней, следовательно, у 5 учеников дни рождения могут совпасть.
Задача 13. Коля подсчитал, что за завтрак, обед и ужин он съел 10 конфет. Докажите, что хотя бы один раз он съел не меньше 4 конфет.
Ответ: доказываемое утверждение следует из равенства: 10 = 3*3 + 1
Задача 14. В классе 37 человек. Докажите, что среди них найдутся 4 человека с одинаковым числом дня рождения.
Решение.В любом месяце дней не более 31, значит, для 37 учеников есть одинаковые числа, месяц роли не играет.
Задача 15. В ящике комода, который стоит в темной комнате, лежат 10 коричневых и 10 красных носков одного размера. Сколько носков нужно достать, чтобы среди них была пара одинакового цвета?
Ответ: 3 носка.
Задача 16. Имеются три ключа от трех чемоданов с разными замками. Достаточно ли трех проб, чтобы открыть чемодан?
Ответ:достаточно.
Задача 17. Какое наибольшее число полей на доске 8 Х 8 можно закрасить в черный цвет так, чтобы в любом уголке вида из трех полей было бы по крайней мере одно незакрашенное?
Ответ:32 клетки.
Задача 18. Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 разбили на 3 группы. Докажите, что произведение чисел в одной из групп не меньше 72.
Решение.Если бы каждое из полученных произведений было меньше 72, то произведение всех чисел от 1 до 9 не превосходило бы 713= 357911. Но 1*2*3*4*5*6*7*8*9= = 362880 > 357911.
Задача 19. Сто человек сидят за круглым столом, причем более половины из них - мужчины. Докажите, что какие-то двое мужчин сидят друг напротив друга.
Решение. В противном случае женщин было бы не меньше, чем мужчин, что противоречит условию задачи.
Задача 20. На планете Тау - Кита суша занимает более половины площади планеты. Докажите, что тау-китяне могут прорыть тоннель, проходящий через центр планеты и соединяющий сушу с сушей.
Решение. Покрасим всю сушу в синий цвет, а все точки, диаметрально противоположные суше – в красный. Площади синей и красной частей планеты будут равными. Если все красные точки покрыты водой, получаем противоречие с условием задачи. Поэтому найдется точка, покрашенная в оба цвета. В ней и надо рыть туннель.
Задача 21. Иван-царевич добыл ключи от нескольких комнат в подземелье, но не знал, какой ключ от какой комнаты. Сколько комнат в подземелье, если, как
подсчитал Иван-царевич, в худшем случае, ему достаточно 20 проб, чтобы выяснить, какой ключ от какой комнаты.
Решение. Первым ключом Иван-Царевич пробует открыть все двери (или меньше, если ключ к какой-то двери подойдет раньше), вторым – все, кроме одной, и т. д. предпоследним – две, последним – ни одной (дверь осталась одна). Так как 2 + 3 + 4 + 5 + 6 = 20, в подземелье 6 дверей.
Задача 22. В погребе стоит 20 одинаковых банок с вареньем. В 8-ми банках клубничное, в 7-ми малиновое, в 5-ти вишневое. Каково наибольшее число банок, которые можно в темноте вынести из погреба с уверенностью, что там осталось еще хотя бы 4 банки одного сорта варенья и 3 банки другого.
Ответ: можно вынести 7 банок
8.Задачи на инвариант
Задача 1. На доске написаны числа 1, 2, 3, ..., 101. Стирают произвольные числа и записывают разность стертых чисел, повторяют эту операцию 100 раз и в результате получают число Р. Докажите, что Р отлично от нуля.
Решение. Надо учесть, что для двух любых чисел их сумма и разность имеют одинаковую четность. В качестве инварианта можно взять четность суммы чисел, записанных на доске. Сумма чисел каждый раз будет нечетна, т.е. Р нечетно и, значит, не равно нулю.
Задача 2. 100 фишек стоят в ряд. Любые две фишки, расположенные через одну, можно менять местами. Удастся ли расположить фишки в обратном порядке?
Решение. Переставляя фишки, легко увидеть, что фишка, стоящая на нечетном месте, переходит только на нечетные места, значит, фишка, стоящая на первом месте, не сможет занять последнее сотое (четное) место.
Задача 3. Разместить числа 1, 2, 3, 4, 5, 6 по одному около вершин треугольника и около середин его сторон так, чтобы сумма трех чисел, расположенных около любой стороны, была одна и та же.
Решение. Определим сумму чисел, стоящих вдоль одной стороны треугольника. Обозначив через a, b, c числа, стоящие в вершинах треугольника, найдем эту сумму: (1 + 2 + 3 + 4 + 5 + 6 + a + b + c):3, т.е. (21 + a + b + c):3. Это число целое, значит, a + b + c делится на 3. Заметив, что a + b + c не меньше, чем 1 + 2 + 3 = 6 , и не больше, чем 4 + 5 + + 6 = 15 , можно утверждать, что (a + b + c) находится среди чисел 6, 9, 12, 15, а возможные значения суммы чисел, расположенных вдоль стороны треугольника, таковы: 9, 10, 11, 12. Эти четыре случая дают четыре решения (начиная от любой вершины, по часовой стрелке переходим на сторону, на следующую вершину и т. д.): (2,6,1,5,3,4); (1,4,5,2,3,6); (4,5,2,3,6,1); (5,3,4,2,6,1).
Задача 4. Можно ли в таблице 5 Х 5 клеток расставить 25 чисел так, чтобы сумма четырех чисел в каждом квадрате 2 Х 2 была отрицательной, а сумма всех 25 чисел положительной?
Решение. На рисунке изображена одна из таких возможностей. Все суммы в квадратах 2 Х 2 равны (-1), а сумма всех 25 чисел равна 2.
2 | -1 | 2 | -1 | 2 |
-1 | -1 | -1 | -1 | -1 |
2 | -1 | 2 | -1 | 2 |
-1 | -1 | -1 | -1 | -1 |
2 | -1 | 2 | -1 | 2 |
Ответ: можно.
Задача 5. Записано 4 числа: 0, 0, 0, 1.За один ход разрешается прибавить по 1 к любым двум из этих чисел. Можно ли за несколько ходов получить 4 одинаковых числа?
Ответ: нельзя, так как сумма чисел будет всегда нечетной
Задача 6. Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум числам прибавлять 1 . Можно ли все шесть чисел сделать равными?
Решение. Сумма данных чисел равна 21. При прибавлении к ним двух единиц каждый раз получаем нечетное число. С другой стороны, сумма шести равных чисел равна четному числу.
Ответ:нельзя.
Задача 7. Новая шахматная фигура “жираф” ходит “буквой г” на четыре клетки в одном направлении и на пять клеток - в другом. Какое наибольшее число “жирафов” можно расставить на шахматной доске так, чтобы ни один не мог напасть на другого, сколько бы он ни ходил?
2 | 3 | 4 | 5 | ||||
3 | 4 | 5 | 6 | ||||
4 | 5 | 6 | 7 | ||||
5 | 6 | 7 | 8 | ||||
1 | 2 | 3 | 4 | ||||
2 | 3 | 4 | 5 | ||||
3 | 4 | 5 | 6 | ||||
4 | 5 | 6 | 7 |
Ответ: 16 “жирафов”. На рисунке показано, как можно расставить 8 “жирафов”: каждого из них можно поставить в любую клетку, на которой стоит его номер, остальных 8 “жирафов” можно расставить симметрично первым восьми.
Задача 8. Расставьте в вершинах куба числа 1, 2, 3, 4, 5, 6, 7, 8 так, чтобы сумма четырех чисел, расположенных на каждой из шести граней куба, была одинакова.
Ответ: в вершинах верхней грани по часовой стрелке: 2, 7, 6, 3; в вершинах нижней – соответственно: 8, 1, 4, 5 (2 – над 8, 7 – над 1 и т. д.)
9.Прикладные задачи
Задача 1.На день рождения полагается дарить букет из нечетного числа цветов. Тюльпаны стоят 45 руб. за штуку. У Вани есть 450 руб. Из какого наибольшего числа тюльпанов он может купить букет Маше на день рождения?
Ответ: 9
Задача 2.Оптовая цена учебника 170 рублей. Розничная цена на 20% выше оптовой. Какое наибольшее число таких учебников можно купить по розничной цене на 7000 рублей?
Ответ: 34
Задача 3.Для приготовления маринада для огурцов на 1 литр воды требуется 12 г лимонной кислоты. Лимонная кислота продается в пакетиках по 10 г. Какое наименьшее число пачек нужно купить хозяйке для приготовления 6 литров маринада?
Ответ: 8
Задача 4.Флакон шампуня стоит 160 рублей. Какое наибольшее число флаконов можно купить на 1000 рублей во время распродажи, когда скидка составляет 25%?
Ответ: 8
Задача 5.Клиент взял в банке кредит рублей на год под %. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно?
Ответ: 1160
Задача 6.Цена на электрический чайник была повышена на 16% и составила 3480 рублей. Сколько рублей стоил чайник до повышения цены?
Ответ: 3000
Задача 7.Мобильный телефон стоил 3500 рублей. Через некоторое время цену на эту модель снизили до 2800 рублей. На сколько процентов была снижена цена?
Ответ: 20
Задача 8.В летнем лагере на каждого участника полагается 40 г сахара в день. В лагере 166 человек. Сколько килограммовых упаковок сахара понадобится на весь лагерь на 5 дней?
Ответ: 34
Задача 9.Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 21 дня. В одной упаковке 10 таблеток лекарства по 0,5 г. Какого наименьшего количества упаковок хватит на весь курс лечения?
Ответ: 7.
Задача 10.Теплоход рассчитан на 750 пассажиров и 25 членов команды. Каждая спасательная шлюпка может вместить 70 человек. Какое наименьшее число
шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?
Ответ: 12
Задача 11.Налог на доходы составляет от заработной платы. Заработная плата Ивана Кузьмича равна рублей. Сколько рублей он получит после вычета налога на доходы?
Ответ: 10875.
Задача 12.При оплате услуг через платежный терминал взымается комиссия 5%. Терминал принимает суммы кратные 10 рублям. Аня хочет положить на счет своего мобильного телефона не меньше 300 рублей. Какую минимальную сумму она должна положить в приемное устройство данного терминала?
Ответ: 320
Задача 13.На автозаправке клиент отдал кассиру 1000 рублей и залил в бак 28 литров бензина по цене 28 руб. 50 коп. за литр. Сколько рублей сдачи он должен получить у кассира?
Ответ: 202
Типы занятий в зависимости от формы их проведения, которые можно проводить, используя данную методическую разработку
1. Занятия в форме соревнований и игр: конкурс, турнир, эстафета, дуэль, КВН, деловая игра, ролевая игра, кроссворд, викторина и т.п.
2. Занятия, основанные на формах, жанрах и методах работы, известных в общественной практике: исследование, изобретательство, анализ первоисточников, комментарий, мозговая атака, интервью, репортаж, рецензия и т п.
3. Занятия, основанные на нетрадиционной организации учебного материала: урок мудрости, откровение, урок-блок, урок - "дублер начинает действовать" и т.п.
4. Занятия, напоминающие публичные формы общения: пресс-конференция, брифинг, аукцион, бенефис, регламентированная дискуссия, панорама, телемост, репортаж, диалог, "живая газета", устный журнал и т.п.
5. Занятия, основанные на имитации деятельности учреждений и организаций: следствие, патентное бюро, ученый совет и т.п.
6. Занятия, основанные на имитации деятельности при проведении общественно-культурных мероприятий: заочная экскурсия, экскурсия в прошлое, путешествие, прогулка и т.п.
7. Занятия, опирающиеся на фантазию: урок - сказка, урок-сюрприз и т.п.
8. Использование на занятии традиционных форм внеклассной работы: "следствие ведут знатоки", спектакль, "брейн-ринг", диспут и т.п.
9. Интегрированные занятия.
10. Трансформация традиционных способов организации занятия: лекция-парадокс, парный опрос, экспресс-опрос, защита оценки, консультация, практикум, семинар и т.п.
Зачет
Основная цель его состоит в диагностике уровня усвоения знаний и умений каждым учащимся на определенном этапе обучения. Положительная отметка за зачет выставляется в случае, если ученик справился со всеми заданиями, соответствующими уровню обязательной подготовки по изучаемому предмету. Практикуются различные виды зачетов: текущий и тематический, зачет-практикум, дифференцированный зачет, зачет-экстерн и т.д.
Лекция
Лекционная форма проведения занятий целесообразна при изучении нового материала, мало связанного с ранее изученным; подаче информации крупными блоками, в плане реализации теории укрупнения дидактических единиц в обучении; выполнении определенного вида заданий по одной или нескольким темам, разделам и т.д.; применении изученного материала при решении практических задач.
Семинар
Случаи, когда предпочтительнее организовывать занятия в форме семинаров: при изучении нового материала, если он доступен для самостоятельной проработки учащимися; после проведения вводных, установочных и текущих лекций; при обобщении и систематизации знаний и умений учащихся по изучаемой теме; при проведении занятий, посвященных различным методам решения задач, выполнения заданий и упражнений и т.д.
Семинар проводится со всем составом учащихся. Учитель заблаговременно определяет тему, цель и задачи семинара, планирует его проведение, формулирует основные и дополнительные вопросы по теме, распределяет задания между учащимися с учетом их индивидуальных возможностей, подбирает литературу, проводит групповые и индивидуальные консультации, проверяет конспекты. К семинару учащиеся оформляют результаты своей самостоятельной работы. Семинарское занятие начинается вступительным словом учителя, в котором он напоминает задачу семинара, порядок его проведения, рекомендует, на что необходимо обратить особое внимание, что следует записать в рабочую тетрадь, дает другие советы. Далее обсуждаются вопросы семинара в форме дискуссии, развернутой беседы, сообщений, чтения первоисточников с соответствующими комментариями, докладов, рефератов и т.п. Затем учитель дополняет сообщения учеников, отвечает на их вопросы и дает оценку их выступлениям. Подводя итоги, отмечает положительное, анализирует содержание, форму выступлений учащихся, указывает на недостатки и пути их преодоления.
Практикум
Практикумы, помимо решения своей специальной задачи – усиления практической направленности обучения, должны быть тесным образом связаны с изученным материалом, а также способствовать прочному, неформальному его усвоению. Основной формой их проведения являются практические и лабораторные работы, на которых учащиеся самостоятельно упражняются в практическом применении усвоенных теоретических знаний и умений. Различают установочные, иллюстративные, тренировочные, исследовательские, творческие и обобщающие уроки-практикумы. Основным способом организации деятельности учащихся на практикумах является групповая форма работы.