Выделим в стационарно текущей идеальной жидкости(физическая абстракция, т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями S1 и S2, по которой слева направо течет жидкость (рис. 47). Пусть в месте сечения S1 скорость течения v1,давлениер1и высота, на которой это сечение расположено,h1.Аналогично, в месте сечения S2 скорость течения v2, давление р2 и высота сечения h2
За малый промежуток времени t жидкость перемещается от сечений S1 и S2 к сечениям S'1иS'2.
Согласно закону сохранения энергии, изменение полной энергии E2-Е1идеальной несжимаемой жидкости должно быть равно работе Авнешних сил по перемещению массы от жидкости:
E2-E1=A, (30.1)
гдеE1 и Е2 — полные энергии жидкости массой m в местах сечений S1иS2 соответственно.
С другой стороны, А— это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями S1иS2, за рассматриваемый малый промежуток времени t. Для перенесения массы тотS1 до S'1жидкость должна переместиться на расстояние l1= v1tи от S2 до S'2 — на расстояние l2=v2t.Отметим, что l1 и l2 настолько малы, что всем точкам объемов, закрашенных на рис. 47, приписывают постоянные значения скорости v,давленияри высоты h.Следовательно,
A = F1l1+F2l2, (30.2)
гдеF1=p1S1 и f2=-р2S2 (отрицательна, так как направлена в сторону, противоположную течению жидкости; рис.47).
Полные энергии Е1иe2будут складываться из кинетической и потенциальной энергий массы m жидкости:
Подставляя (30.3) и (30.4) в (30.1) и приравнивая (30.1) и (30.2), получим
Согласно уравнению неразрывности для несжимаемой жидкости (29.1), объем, занимаемый жидкостью, остается постоянным, т. е.
Разделив выражение (30.5) на V, получим
где — плотность жидкости. Но так как сечения выбирались произвольно, то можем записать
Выражение (30.6) выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико.
Величинар в формуле (30.6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина v2/2 — динамическим давлением. Как уже указывалось выше (см. § 28), величинаghпредставляет собой гидростатическое давление.
Для горизонтальной трубки тока (h1=h2) выражение (30.6) принимает вид
гдер+v2/2 называется полным давлением.
Из уравнения Бернулли (30.7) для горизонтальной трубки тока и уравнения неразрывности (29.1) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше.
Это можно продемонстрировать, установив вдоль трубы ряд манометров(рис.48). В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В,прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.
Так как динамическое давление связано со скоростью движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис.49). Прибор состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру. С помощью одной из трубок измеряется полное давление (р0), с помощью другой — статическое (р).Манометром измеряется разность давлений:
p0-p = 0gh,(30.8)
где — плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статического давлений равна динамическому давлению:
p0-p=pv2/2. (30.9)
Из формул (30.8) и (30.9) получаем искомую скорость потока жидкости:
Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис. 50). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст. = 133,32 Па).
Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис.51).
Рассмотрим два сечения (на уровне h1свободной поверхности жидкости в сосуде и на уровне h2выхода ее из отверстия). Напишем для них уравнение Бернулли:
Так как давления р1ир2в жидкости на уровнях первого и второго сечений равны
атмосферному, т. е. p1=p2, то уравнение будет иметь вид
Из уравнения неразрывности (29.1) следует, что v2/v1=S1/S2,гдеS1 и S2 — площади поперечных сечений сосуда и отверстия. Если S1>>S2,то членом v21/2можно пренебречь и
Это выражение получило название формулы Торричелли1.
СПИСОК ЛИТЕРАТУРЫ
1. Детлаф А.А. Курс физики: учеб. пособие для вузов / А.А. Детлаф. ‒ 2-е изд., испр. и доп. – М.: Высш. шк., 2003. – 718 с.
2. Трофимова Т.И. Курс физики: учеб. пособие / Т.И. Трофимова. ‒ 3-е изд., испр. – М.: Высш. шк., 2003. – 542 с.
3. Ю.А. Барков, Г.Н. Вотинов, О.М. Зверев, А.В. Перминов. КРАТКИЙ КУРС ОБЩЕЙ ФИЗИКИ. Издательство Пермского национального исследовательского политехнического университета, 2015
1 Э. Торричелли (1608—1647) —итальянский физик и математик.