Решение задач на смеси и сплавы

Конспект занятия
В данном конспекте занятия рассматриваются два способа решения задач на "смеси и сплавы". Приведено большое количество дополнительных задач
Малых Наталья Владимировна
Содержимое публикации

МКОУ ООШ с.Фатеево Кирово-Чепецкого района Кировской области

Учитель математики Н.В. Малых

«Решение текстовых задач на смеси и сплавы».

Цели:

Образовательные: Создание условий для систематизации, обобщения и углубления знаний учащихся при решении текстовых задач. Повышение практической направленности предмета через решение практических задач.

Воспитательные: Формирование математической грамотности учащихся.

Развивающие: Развитие навыков логического, творческого мышления, сообразительности и наблюдательности.

Оборудование:Раздаточный материал; компьютерная презентация в программе PowerPoint; мультимедиапроектор; ПК; экран.

I. Рассмотрим решения задач с применением таблицы.

Таблица для решения задач имеет вид.

Наименование веществ, растворов, смесей, сплавов

% содержание вещества (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

Задача №1 Имеется два сплава меди и свинца. Один сплав содержит 15% меди, а другой 65% меди. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

Наименование веществ, растворов, смесей, сплавов

% содержание меди (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

Первый сплав

15%=0,15

хг

0,15*х

Второй раствор

65%=0,65

(200 – х)г

0,65*(200–х)=130–0,65х

Получившийся раствор

30%=0,3

200 г

200*0,3=60



Сумма масс меди в двух первых сплавах (то есть в первых двух строчках) равна массе меди в полученном сплаве (третья строка таблицы):

Решив это уравнение, получаем х=140. При этом значении х выражение
200 – х=60.Это означает, что первого сплава надо взять140г, а второго 60г.

Ответ:140г. 60г.

II. Рассмотрим решение этой же задачи с помощью следующей модели. Изобразим каждый из растворов в виде прямоугольника, разбитого на два фрагмента (по числу составляющих элементов). Для того, чтобы показать, что происходит смешивание веществ поставим знак «+» между первым и вторым прямоугольниками, а знак «=» между вторым и третьим прямоугольниками показывает, что третий раствор получен в результате смешивания первых двух. Полученная схема имеет следующий вид:

Рассматриваемый в задаче процесс можно представить в виде следующей модели- схемы:

медь

медь

медь



15%

65%

30%

+

=



Решение.

200г

Пустьхг – масса первого сплава. Тогда, (200-х)г – масса второго сплава. Дополним последнюю схему этими выражениями. Получим следующую схему:

Сумма масс меди в двух первых сплавах (то есть слева от знака равенства) равна массе меди в полученном третьем сплаве (справа от знака равенства):

Решив это уравнение, получаем х=140. При этом значении х выражение 200-х=60.Это означает, что первого сплава надо взять140г, а второго-60г.

Ответ:140г. 60г.

Дополнительные задачи на проценты, сплавы и смеси

1. Задание 21 № 311653

Смешав 60%−ый и 30%−ый растворы кислоты и добавив 5 кг чистой воды, получили 20%−ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%−го раствора той же кислоты, то получили бы 70%−ый раствор кислоты. Сколько килограммов 60%−го раствора использовали для получения смеси?

2. Задание 21 № 314395

Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?

3. Задание 21 № 314431

При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы?

4. Задание 21 № 314508

На пост главы администрации города претендовало три кандидата: Журавлёв, Зайцев, Иванов. Во время выборов за Иванова было отдано в 2 раза больше голосов, чем за Журавлёва, а за Зайцева — в 3 раза больше, чем за Журавлёва и Иванова вместе. Сколько процентов голосов было отдано за победителя?

5. Задание 21 № 316357

Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава.

6. Задание 21 № 338773

Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов?

7. Задание 21 № 338786

Смешали некоторое количество 10-процентного раствора некоторого вещества с таким же количеством 12-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

8. Задание 21 № 341367

Свежие фрукты содержат 86 % воды, а высушенные — 23 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

9. Задание 21 № 348438

Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

10. Задание 21 № 349497

Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?

11. Задание 21 № 349691

Имеются два сосуда, содержащие 40 кг и 30 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 73% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 72% кислоты. Сколько килограммов кислоты содержится во втором растворе?

12. Задание 21 № 349700

Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе?

13. Задание 21 № 349844

Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?

14. Задание 21 № 350150

Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе?

15. Задание 21 № 350236

Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?

16. Задание 21 № 351603

Имеются два сосуда, содержащие 22 кг и 18 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 32% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 30% кислоты. Сколько килограммов кислоты содержится в первом растворе?

17. Задание 21 № 351824

Имеются два сосуда, содержащие 30 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 40% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 37% кислоты. Сколько килограммов кислоты содержится во втором растворе?

18. Задание 21 № 352466

Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе?

19. Задание 21 № 353527

Смешали некоторое количество 21-процентного раствора некоторого вещества с таким же количеством 95-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

6

Комментировать
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ бесплатно!
Подробнее
Также Вас может заинтересовать
Математика
Презентации по математике для 10 класса «Такие разные платежи»
Математика
Математика
Разное по математике для дошкольников «Числовые рыбки»
Математика
Конспект занятия по математике для 2 класса «Решение задач»
Математика
Конспект занятия по математике для дошкольников «Конспект занятия по ФЭМП в старшей группе: «Играем в школу»»
Комментарии
04.11.2023 13:14 Бернацкая Жанна Павловна
1
Учитель продумал, таким образом, организацию урока, чтобы учащиеся получили информацию в доступной и интересной форме. Во время занятия было повторение пройденного материала в виде разбора задачи двумя различными способами и представлено достаточное количество задач для закрепления материала.
Урок направлен на формирование ключевых компетентностей учащихся, а также на подготовку учащихся к экзамену по математике.
Добавить
публикацию
После добавления публикации на сайт, в личном кабинете вы сможете скачать бесплатно свидетельство и справку о публикации в СМИ.
Cвидетельство о публикации сразу
Получите свидетельство бесплатно сразу после добавления публикации.
Подробнее
Свидетельство за распространение педагогического опыта
Опубликует не менее 15 материалов и скачайте бесплатно.
Подробнее
Рецензия на методическую разработку
Опубликуйте материал и скачайте рецензию бесплатно.
Подробнее
Свидетельство участника экспертной комиссии
Стать экспертом и скачать свидетельство бесплатно.
Подробнее
Помощь